Collaborating Authors


Propositionalization and Embeddings: Two Sides of the Same Coin Machine Learning

Data preprocessing is an important component of machine learning pipelines, which requires ample time and resources. An integral part of preprocessing is data transformation into the format required by a given learning algorithm. This paper outlines some of the modern data processing techniques used in relational learning that enable data fusion from different input data types and formats into a single table data representation, focusing on the propositionalization and embedding data transformation approaches. While both approaches aim at transforming data into tabular data format, they use different terminology and task definitions, are perceived to address different goals, and are used in different contexts. This paper contributes a unifying framework that allows for improved understanding of these two data transformation techniques by presenting their unified definitions, and by explaining the similarities and differences between the two approaches as variants of a unified complex data transformation task. In addition to the unifying framework, the novelty of this paper is a unifying methodology combining propositionalization and embeddings, which benefits from the advantages of both in solving complex data transformation and learning tasks. We present two efficient implementations of the unifying methodology: an instance-based PropDRM approach, and a feature-based PropStar approach to data transformation and learning, together with their empirical evaluation on several relational problems. The results show that the new algorithms can outperform existing relational learners and can solve much larger problems.

Feature Selection and Feature Extraction in Pattern Analysis: A Literature Review Machine Learning

Pattern analysis often requires a pre-processing stage for extracting or selecting features in order to help the classification, prediction, or clustering stage discriminate or represent the data in a better way. The reason for this requirement is that the raw data are complex and difficult to process without extracting or selecting appropriate features beforehand. This paper reviews theory and motivation of different common methods of feature selection and extraction and introduces some of their applications. Some numerical implementations are also shown for these methods. Finally, the methods in feature selection and extraction are compared.

Broad Learning for Healthcare Machine Learning

A broad spectrum of data from different modalities are generated in the healthcare domain every day, including scalar data (e.g., clinical measures collected at hospitals), tensor data (e.g., neuroimages analyzed by research institutes), graph data (e.g., brain connectivity networks), and sequence data (e.g., digital footprints recorded on smart sensors). Capability for modeling information from these heterogeneous data sources is potentially transformative for investigating disease mechanisms and for informing therapeutic interventions. Our works in this thesis attempt to facilitate healthcare applications in the setting of broad learning which focuses on fusing heterogeneous data sources for a variety of synergistic knowledge discovery and machine learning tasks. We are generally interested in computer-aided diagnosis, precision medicine, and mobile health by creating accurate user profiles which include important biomarkers, brain connectivity patterns, and latent representations. In particular, our works involve four different data mining problems with application to the healthcare domain: multi-view feature selection, subgraph pattern mining, brain network embedding, and multi-view sequence prediction.

Relief-Based Feature Selection: Introduction and Review Machine Learning

Feature selection plays a critical role in data mining, driven by increasing feature dimensionality in target problems and growing interest in advanced but computationally expensive methodologies able to model complex associations. Specifically, there is a need for feature selection methods that are computationally efficient, yet sensitive to complex patterns of association, e.g. interactions, so that informative features are not mistakenly eliminated prior to downstream modeling. This paper focuses on Relief-based algorithms (RBAs), a unique family of filter-style feature selection algorithms that strike an effective balance between these objectives while flexibly adapting to various data characteristics, e.g. classification vs. regression. First, this work broadly examines types of feature selection and defines RBAs within that context. Next, we introduce the original Relief algorithm and associated concepts, emphasizing the intuition behind how it works, how feature weights generated by the algorithm can be interpreted, and why it is sensitive to feature interactions without evaluating combinations of features. Lastly, we include an expansive review of RBA methodological research beyond Relief and its popular descendant, ReliefF. In particular, we characterize branches of RBA research, and provide comparative summaries of RBA algorithms including contributions, strategies, functionality, time complexity, adaptation to key data characteristics, and software availability.

Learning to Plan Chemical Syntheses Artificial Intelligence

From medicines to materials, small organic molecules are indispensable for human well-being. To plan their syntheses, chemists employ a problem solving technique called retrosynthesis. In retrosynthesis, target molecules are recursively transformed into increasingly simpler precursor compounds until a set of readily available starting materials is obtained. Computer-aided retrosynthesis would be a highly valuable tool, however, past approaches were slow and provided results of unsatisfactory quality. Here, we employ Monte Carlo Tree Search (MCTS) to efficiently discover retrosynthetic routes. MCTS was combined with an expansion policy network that guides the search, and an "in-scope" filter network to pre-select the most promising retrosynthetic steps. These deep neural networks were trained on 12 million reactions, which represents essentially all reactions ever published in organic chemistry. Our system solves almost twice as many molecules and is 30 times faster in comparison to the traditional search method based on extracted rules and hand-coded heuristics. Finally after a 60 year history of computer-aided synthesis planning, chemists can no longer distinguish between routes generated by a computer system and real routes taken from the scientific literature. We anticipate that our method will accelerate drug and materials discovery by assisting chemists to plan better syntheses faster, and by enabling fully automated robot synthesis.

A Survey of Computational Treatments of Biomolecules by Robotics-Inspired Methods Modeling Equilibrium Structure and Dynamic

Journal of Artificial Intelligence Research

More than fifty years of research in molecular biology have demonstrated that the ability of small and large molecules to interact with one another and propagate the cellular processes in the living cell lies in the ability of these molecules to assume and switch between specific structures under physiological conditions. Elucidating biomolecular structure and dynamics at equilibrium is therefore fundamental to furthering our understanding of biological function, molecular mechanisms in the cell, our own biology, disease, and disease treatments. By now, there is a wealth of methods designed to elucidate biomolecular structure and dynamics contributed from diverse scientific communities. In this survey, we focus on recent methods contributed from the Robotics community that promise to address outstanding challenges regarding the disparate length and time scales that characterize dynamic molecular processes in the cell. In particular, we survey robotics-inspired methods designed to obtain efficient representations of structure spaces of molecules in isolation or in assemblies for the purpose of characterizing equilibrium structure and dynamics. While an exhaustive review is an impossible endeavor, this survey balances the description of important algorithmic contributions with a critical discussion of outstanding computational challenges. The objective is to spur further research to address outstanding challenges in modeling equilibrium biomolecular structure and dynamics.

Computational Biology in the 21st Century

Communications of the ACM

Computational biologists answer biological and biomedical questions by using computation in support of--or in place of--laboratory procedures, hoping to obtain more accurate answers at a greatly reduced cost. The past two decades have seen unprecedented technological progress with regard to generating biological data; next-generation sequencing, mass spectrometry, microarrays, cryo-electron microscopy, and other high-throughput approaches have led to an explosion of data. However, this explosion is a mixed blessing. On the one hand, the scale and scope of data should allow new insights into genetic and infectious diseases, cancer, basic biology, and even human migration patterns. On the other hand, researchers are generating datasets so massive that it has become difficult to analyze them to discover patterns that give clues to the underlying biological processes. Certainly, computers are getting faster and more economical; the amount of processing available per dollar of computer hardware is more or less doubling every year or two; a similar claim can be made about storage capacity (Figure 1). In 2002, when the first human genome was sequenced, the growth in computing power was still matching the growth rate of genomic data. However, the sequencing technology used for the Human Genome Project--Sanger sequencing--was supplanted around 2004, with the advent of what is now known as next-generation sequencing. The material costs to sequence a genome have plummeted in the past decade, to the point where a whole human genome can be sequenced for less than US 1,000.

Notes on a New Philosophy of Empirical Science Machine Learning

This book presents a methodology and philosophy of empirical science based on large scale lossless data compression. In this view a theory is scientific if it can be used to build a data compression program, and it is valuable if it can compress a standard benchmark database to a small size, taking into account the length of the compressor itself. This methodology therefore includes an Occam principle as well as a solution to the problem of demarcation. Because of the fundamental difficulty of lossless compression, this type of research must be empirical in nature: compression can only be achieved by discovering and characterizing empirical regularities in the data. Because of this, the philosophy provides a way to reformulate fields such as computer vision and computational linguistics as empirical sciences: the former by attempting to compress databases of natural images, the latter by attempting to compress large text databases. The book argues that the rigor and objectivity of the compression principle should set the stage for systematic progress in these fields. The argument is especially strong in the context of computer vision, which is plagued by chronic problems of evaluation. The book also considers the field of machine learning. Here the traditional approach requires that the models proposed to solve learning problems be extremely simple, in order to avoid overfitting. However, the world may contain intrinsically complex phenomena, which would require complex models to understand. The compression philosophy can justify complex models because of the large quantity of data being modeled (if the target database is 100 Gb, it is easy to justify a 10 Mb model). The complex models and abstractions learned on the basis of the raw data (images, language, etc) can then be reused to solve any specific learning problem, such as face recognition or machine translation.

TRUST-TECH based Methods for Optimization and Learning Artificial Intelligence

Many problems that arise in machine learning domain deal with nonlinearity and quite often demand users to obtain global optimal solutions rather than local optimal ones. Optimization problems are inherent in machine learning algorithms and hence many methods in machine learning were inherited from the optimization literature. Popularly known as the initialization problem, the ideal set of parameters required will significantly depend on the given initialization values. The recently developed TRUST-TECH (TRansformation Under STability-reTaining Equilibria CHaracterization) methodology systematically explores the subspace of the parameters to obtain a complete set of local optimal solutions. In this thesis work, we propose TRUST-TECH based methods for solving several optimization and machine learning problems. Two stages namely, the local stage and the neighborhood-search stage, are repeated alternatively in the solution space to achieve improvements in the quality of the solutions. Our methods were tested on both synthetic and real datasets and the advantages of using this novel framework are clearly manifested. This framework not only reduces the sensitivity to initialization, but also allows the flexibility for the practitioners to use various global and local methods that work well for a particular problem of interest. Other hierarchical stochastic algorithms like evolutionary algorithms and smoothing algorithms are also studied and frameworks for combining these methods with TRUST-TECH have been proposed and evaluated on several test systems.