Plotting

Results


A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and Challenges

arXiv.org Artificial Intelligence

This is Part II of the two-part comprehensive survey devoted to a computing framework most commonly known under the names Hyperdimensional Computing and Vector Symbolic Architectures (HDC/VSA). Both names refer to a family of computational models that use high-dimensional distributed representations and rely on the algebraic properties of their key operations to incorporate the advantages of structured symbolic representations and vector distributed representations. Holographic Reduced Representations is an influential HDC/VSA model that is well-known in the machine learning domain and often used to refer to the whole family. However, for the sake of consistency, we use HDC/VSA to refer to the area. Part I of this survey covered foundational aspects of the area, such as historical context leading to the development of HDC/VSA, key elements of any HDC/VSA model, known HDC/VSA models, and transforming input data of various types into high-dimensional vectors suitable for HDC/VSA. This second part surveys existing applications, the role of HDC/VSA in cognitive computing and architectures, as well as directions for future work. Most of the applications lie within the machine learning/artificial intelligence domain, however we also cover other applications to provide a thorough picture. The survey is written to be useful for both newcomers and practitioners.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Towards Personalized and Human-in-the-Loop Document Summarization

arXiv.org Artificial Intelligence

The ubiquitous availability of computing devices and the widespread use of the internet have generated a large amount of data continuously. Therefore, the amount of available information on any given topic is far beyond humans' processing capacity to properly process, causing what is known as information overload. To efficiently cope with large amounts of information and generate content with significant value to users, we require identifying, merging and summarising information. Data summaries can help gather related information and collect it into a shorter format that enables answering complicated questions, gaining new insight and discovering conceptual boundaries. This thesis focuses on three main challenges to alleviate information overload using novel summarisation techniques. It further intends to facilitate the analysis of documents to support personalised information extraction. This thesis separates the research issues into four areas, covering (i) feature engineering in document summarisation, (ii) traditional static and inflexible summaries, (iii) traditional generic summarisation approaches, and (iv) the need for reference summaries. We propose novel approaches to tackle these challenges, by: i)enabling automatic intelligent feature engineering, ii) enabling flexible and interactive summarisation, iii) utilising intelligent and personalised summarisation approaches. The experimental results prove the efficiency of the proposed approaches compared to other state-of-the-art models. We further propose solutions to the information overload problem in different domains through summarisation, covering network traffic data, health data and business process data.


The AI Index 2021 Annual Report

arXiv.org Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.


A Comprehensive Review of Computer-aided Whole-slide Image Analysis: from Datasets to Feature Extraction, Segmentation, Classification, and Detection Approaches

arXiv.org Artificial Intelligence

With the development of computer-aided diagnosis (CAD) and image scanning technology, Whole-slide Image (WSI) scanners are widely used in the field of pathological diagnosis. Therefore, WSI analysis has become the key to modern digital pathology. Since 2004, WSI has been used more and more in CAD. Since machine vision methods are usually based on semi-automatic or fully automatic computers, they are highly efficient and labor-saving. The combination of WSI and CAD technologies for segmentation, classification, and detection helps histopathologists obtain more stable and quantitative analysis results, save labor costs and improve diagnosis objectivity. This paper reviews the methods of WSI analysis based on machine learning. Firstly, the development status of WSI and CAD methods are introduced. Secondly, we discuss publicly available WSI datasets and evaluation metrics for segmentation, classification, and detection tasks. Then, the latest development of machine learning in WSI segmentation, classification, and detection are reviewed continuously. Finally, the existing methods are studied, the applicabilities of the analysis methods are analyzed, and the application prospects of the analysis methods in this field are forecasted.


Is there a role for statistics in artificial intelligence?

arXiv.org Artificial Intelligence

The research on and application of artificial intelligence (AI) has triggered a comprehensive scientific, economic, social and political discussion. Here we argue that statistics, as an interdisciplinary scientific field, plays a substantial role both for the theoretical and practical understanding of AI and for its future development. Statistics might even be considered a core element of AI. With its specialist knowledge of data evaluation, starting with the precise formulation of the research question and passing through a study design stage on to analysis and interpretation of the results, statistics is a natural partner for other disciplines in teaching, research and practice. This paper aims at contributing to the current discussion by highlighting the relevance of statistical methodology in the context of AI development. In particular, we discuss contributions of statistics to the field of artificial intelligence concerning methodological development, planning and design of studies, assessment of data quality and data collection, differentiation of causality and associations and assessment of uncertainty in results. Moreover, the paper also deals with the equally necessary and meaningful extension of curricula in schools and universities.


Intelligence, physics and information -- the tradeoff between accuracy and simplicity in machine learning

arXiv.org Machine Learning

How can we enable machines to make sense of the world, and become better at learning? To approach this goal, I believe viewing intelligence in terms of many integral aspects, and also a universal two-term tradeoff between task performance and complexity, provides two feasible perspectives. In this thesis, I address several key questions in some aspects of intelligence, and study the phase transitions in the two-term tradeoff, using strategies and tools from physics and information. Firstly, how can we make the learning models more flexible and efficient, so that agents can learn quickly with fewer examples? Inspired by how physicists model the world, we introduce a paradigm and an AI Physicist agent for simultaneously learning many small specialized models (theories) and the domain they are accurate, which can then be simplified, unified and stored, facilitating few-shot learning in a continual way. Secondly, for representation learning, when can we learn a good representation, and how does learning depend on the structure of the dataset? We approach this question by studying phase transitions when tuning the tradeoff hyperparameter. In the information bottleneck, we theoretically show that these phase transitions are predictable and reveal structure in the relationships between the data, the model, the learned representation and the loss landscape. Thirdly, how can agents discover causality from observations? We address part of this question by introducing an algorithm that combines prediction and minimizing information from the input, for exploratory causal discovery from observational time series. Fourthly, to make models more robust to label noise, we introduce Rank Pruning, a robust algorithm for classification with noisy labels. I believe that building on the work of my thesis we will be one step closer to enable more intelligent machines that can make sense of the world.


Feature Selection and Feature Extraction in Pattern Analysis: A Literature Review

arXiv.org Machine Learning

Pattern analysis often requires a pre-processing stage for extracting or selecting features in order to help the classification, prediction, or clustering stage discriminate or represent the data in a better way. The reason for this requirement is that the raw data are complex and difficult to process without extracting or selecting appropriate features beforehand. This paper reviews theory and motivation of different common methods of feature selection and extraction and introduces some of their applications. Some numerical implementations are also shown for these methods. Finally, the methods in feature selection and extraction are compared.


Focal onset seizure prediction using convolutional networks

arXiv.org Machine Learning

Objective: This work investigates the hypothesis that focal seizures can be predicted using scalp electroencephalogram (EEG) data. Our first aim is to learn features that distinguish between the interictal and preictal regions. The second aim is to define a prediction horizon in which the prediction is as accurate and as early as possible, clearly two competing objectives. Methods: Convolutional filters on the wavelet transformation of the EEG signal are used to define and learn quantitative signatures for each period: interictal, preictal, and ictal. The optimal seizure prediction horizon is also learned from the data as opposed to making an a priori assumption. Results: Computational solutions to the optimization problem indicate a ten-minute seizure prediction horizon. This result is verified by measuring Kullback-Leibler divergence on the distributions of the automatically extracted features. Conclusion: The results on the EEG database of 204 recordings demonstrate that (i) the preictal phase transition occurs approximately ten minutes before seizure onset, and (ii) the prediction results on the test set are promising, with a sensitivity of 87.8% and a low false prediction rate of 0.142 FP/h. Our results significantly outperform a random predictor and other seizure prediction algorithms. Significance: We demonstrate that a robust set of features can be learned from scalp EEG that characterize the preictal state of focal seizures.