Measuring Outcomes in Healthcare Economics using Artificial Intelligence: with Application to Resource Management Artificial Intelligence

The quality of service in healthcare is constantly challenged by outlier events such as pandemics (i.e. Covid-19) and natural disasters (such as hurricanes and earthquakes). In most cases, such events lead to critical uncertainties in decision making, as well as in multiple medical and economic aspects at a hospital. External (geographic) or internal factors (medical and managerial), lead to shifts in planning and budgeting, but most importantly, reduces confidence in conventional processes. In some cases, support from other hospitals proves necessary, which exacerbates the planning aspect. This manuscript presents three data-driven methods that provide data-driven indicators to help healthcare managers organize their economics and identify the most optimum plan for resources allocation and sharing. Conventional decision-making methods fall short in recommending validated policies for managers. Using reinforcement learning, genetic algorithms, traveling salesman, and clustering, we experimented with different healthcare variables and presented tools and outcomes that could be applied at health institutes. Experiments are performed; the results are recorded, evaluated, and presented.

Interpretable bias mitigation for textual data: Reducing gender bias in patient notes while maintaining classification performance Machine Learning

Medical systems in general, and patient treatment decisions and outcomes in particular, are affected by bias based on gender and other demographic elements. As language models are increasingly applied to medicine, there is a growing interest in building algorithmic fairness into processes impacting patient care. Much of the work addressing this question has focused on biases encoded in language models -- statistical estimates of the relationships between concepts derived from distant reading of corpora. Building on this work, we investigate how word choices made by healthcare practitioners and language models interact with regards to bias. We identify and remove gendered language from two clinical-note datasets and describe a new debiasing procedure using BERT-based gender classifiers. We show minimal degradation in health condition classification tasks for low- to medium-levels of bias removal via data augmentation. Finally, we compare the bias semantically encoded in the language models with the bias empirically observed in health records. This work outlines an interpretable approach for using data augmentation to identify and reduce the potential for bias in natural language processing pipelines.