Collaborating Authors


Survey XII: What Is the Future of Ethical AI Design? – Imagining the Internet


Results released June 16, 2021 – Pew Research Center and Elon University's Imagining the Internet Center asked experts where they thought efforts aimed at ethical artificial intelligence design would stand in the year 2030. Some 602 technology innovators, developers, business and policy leaders, researchers and activists responded to this specific question. The Question – Regarding the application of AI Ethics by 2030: In recent years, there have been scores of convenings and even more papers generated proposing ethical frameworks for the application of artificial intelligence (AI). They cover a host of issues including transparency, justice and fairness, privacy, freedom and human autonomy, beneficence and non-maleficence, freedom, trust, sustainability and dignity. Our questions here seek your predictions about the possibilities for such efforts. By 2030, will most of the AI systems being used by organizations of all sorts employ ethical principles focused primarily on the public ...

New technology propels efforts to fight Western wildfires

Boston Herald

As drought- and wind-driven wildfires have become more dangerous across the American West in recent years, firefighters have tried to become smarter in how they prepare. They're using new technology and better positioning of resources in a bid to keep small blazes from erupting into mega-fires like the ones that torched a record 4% of California last year, or the nation's biggest wildfire this year that has charred a section of Oregon half the size of Rhode Island. There have been 730 more wildfires in California so far this year than last, an increase of about 16%. But nearly triple the area has burned -- 470 square miles. Catching fires more quickly gives firefighters a better chance of keeping them small.

The State of AI Ethics Report (January 2021) Artificial Intelligence

The 3rd edition of the Montreal AI Ethics Institute's The State of AI Ethics captures the most relevant developments in AI Ethics since October 2020. It aims to help anyone, from machine learning experts to human rights activists and policymakers, quickly digest and understand the field's ever-changing developments. Through research and article summaries, as well as expert commentary, this report distills the research and reporting surrounding various domains related to the ethics of AI, including: algorithmic injustice, discrimination, ethical AI, labor impacts, misinformation, privacy, risk and security, social media, and more. In addition, The State of AI Ethics includes exclusive content written by world-class AI Ethics experts from universities, research institutes, consulting firms, and governments. Unique to this report is "The Abuse and Misogynoir Playbook," written by Dr. Katlyn Tuner (Research Scientist, Space Enabled Research Group, MIT), Dr. Danielle Wood (Assistant Professor, Program in Media Arts and Sciences; Assistant Professor, Aeronautics and Astronautics; Lead, Space Enabled Research Group, MIT) and Dr. Catherine D'Ignazio (Assistant Professor, Urban Science and Planning; Director, Data + Feminism Lab, MIT). The piece (and accompanying infographic), is a deep-dive into the historical and systematic silencing, erasure, and revision of Black women's contributions to knowledge and scholarship in the United Stations, and globally. Exposing and countering this Playbook has become increasingly important following the firing of AI Ethics expert Dr. Timnit Gebru (and several of her supporters) at Google. This report should be used not only as a point of reference and insight on the latest thinking in the field of AI Ethics, but should also be used as a tool for introspection as we aim to foster a more nuanced conversation regarding the impacts of AI on the world.

The AI Index 2021 Annual Report Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.

Patterns, predictions, and actions: A story about machine learning Machine Learning

This graduate textbook on machine learning tells a story of how patterns in data support predictions and consequential actions. Starting with the foundations of decision making, we cover representation, optimization, and generalization as the constituents of supervised learning. A chapter on datasets as benchmarks examines their histories and scientific bases. Self-contained introductions to causality, the practice of causal inference, sequential decision making, and reinforcement learning equip the reader with concepts and tools to reason about actions and their consequences. Throughout, the text discusses historical context and societal impact. We invite readers from all backgrounds; some experience with probability, calculus, and linear algebra suffices.

Does Palantir See Too Much?


On a bright Tuesday afternoon in Paris last fall, Alex Karp was doing tai chi in the Luxembourg Gardens. He wore blue Nike sweatpants, a blue polo shirt, orange socks, charcoal-gray sneakers and white-framed sunglasses with red accents that inevitably drew attention to his most distinctive feature, a tangle of salt-and-pepper hair rising skyward from his head. Under a canopy of chestnut trees, Karp executed a series of elegant tai chi and qigong moves, shifting the pebbles and dirt gently under his feet as he twisted and turned. A group of teenagers watched in amusement. After 10 minutes or so, Karp walked to a nearby bench, where one of his bodyguards had placed a cooler and what looked like an instrument case. The cooler held several bottles of the nonalcoholic German beer that Karp drinks (he would crack one open on the way out of the park). The case contained a wooden sword, which he needed for the next part of his routine. "I brought a real sword the last time I was here, but the police stopped me," he said matter of factly as he began slashing the air with the sword. Those gendarmes evidently didn't know that Karp, far from being a public menace, was the chief executive of an American company whose software has been deployed on behalf of public safety in France. The company, Palantir Technologies, is named after the seeing stones in J.R.R. Tolkien's "The Lord of the Rings." Its two primary software programs, Gotham and Foundry, gather and process vast quantities of data in order to identify connections, patterns and trends that might elude human analysts. The stated goal of all this "data integration" is to help organizations make better decisions, and many of Palantir's customers consider its technology to be transformative. Karp claims a loftier ambition, however. "We built our company to support the West," he says. To that end, Palantir says it does not do business in countries that it considers adversarial to the U.S. and its allies, namely China and Russia. In the company's early days, Palantir employees, invoking Tolkien, described their mission as "saving the shire." The brainchild of Karp's friend and law-school classmate Peter Thiel, Palantir was founded in 2003. It was seeded in part by In-Q-Tel, the C.I.A.'s venture-capital arm, and the C.I.A. remains a client. Palantir's technology is rumored to have been used to track down Osama bin Laden -- a claim that has never been verified but one that has conferred an enduring mystique on the company. These days, Palantir is used for counterterrorism by a number of Western governments.

Language Models are Open Knowledge Graphs Artificial Intelligence

This paper shows how to construct knowledge graphs (KGs) from pre-trained language models (e.g., BERT, GPT-2/3), without human supervision. Popular KGs (e.g, Wikidata, NELL) are built in either a supervised or semi-supervised manner, requiring humans to create knowledge. Recent deep language models automatically acquire knowledge from large-scale corpora via pre-training. The stored knowledge has enabled the language models to improve downstream NLP tasks, e.g., answering questions, and writing code and articles. In this paper, we propose an unsupervised method to cast the knowledge contained within language models into KGs. We show that KGs are constructed with a single forward pass of the pre-trained language models (without fine-tuning) over the corpora. We demonstrate the quality of the constructed KGs by comparing to two KGs (Wikidata, TAC KBP) created by humans. Our KGs also provide open factual knowledge that is new in the existing KGs. Our code and KGs will be made publicly available.

Multi-document Summarization with Maximal Marginal Relevance-guided Reinforcement Learning Artificial Intelligence

While neural sequence learning methods have made significant progress in single-document summarization (SDS), they produce unsatisfactory results on multi-document summarization (MDS). We observe two major challenges when adapting SDS advances to MDS: (1) MDS involves larger search space and yet more limited training data, setting obstacles for neural methods to learn adequate representations; (2) MDS needs to resolve higher information redundancy among the source documents, which SDS methods are less effective to handle. To close the gap, we present RL-MMR, Maximal Margin Relevance-guided Reinforcement Learning for MDS, which unifies advanced neural SDS methods and statistical measures used in classical MDS. RL-MMR casts MMR guidance on fewer promising candidates, which restrains the search space and thus leads to better representation learning. Additionally, the explicit redundancy measure in MMR helps the neural representation of the summary to better capture redundancy. Extensive experiments demonstrate that RL-MMR achieves state-of-the-art performance on benchmark MDS datasets. In particular, we show the benefits of incorporating MMR into end-to-end learning when adapting SDS to MDS in terms of both learning effectiveness and efficiency.

Scientists use big data to sway elections and predict riots -- welcome to the 1960s


Ignorance of history is a badge of honour in Silicon Valley. "The only thing that matters is the future," self-driving-car engineer Anthony Levandowski told The New Yorker in 20181. Levandowski, formerly of Google, Uber and Google's autonomous-vehicle subsidiary Waymo (and recently sentenced to 18 months in prison for stealing trade secrets), is no outlier. The gospel of'disruptive innovation' depends on the abnegation of history2. 'Move fast and break things' was Facebook's motto. Another word for this is heedlessness. And here are a few more: negligence, foolishness and blindness.

GPT-3 Creative Fiction


What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.