Results


A Comprehensive Survey on Radio Frequency (RF) Fingerprinting: Traditional Approaches, Deep Learning, and Open Challenges

arXiv.org Artificial Intelligence

Fifth generation (5G) networks and beyond envisions massive Internet of Things (IoT) rollout to support disruptive applications such as extended reality (XR), augmented/virtual reality (AR/VR), industrial automation, autonomous driving, and smart everything which brings together massive and diverse IoT devices occupying the radio frequency (RF) spectrum. Along with spectrum crunch and throughput challenges, such a massive scale of wireless devices exposes unprecedented threat surfaces. RF fingerprinting is heralded as a candidate technology that can be combined with cryptographic and zero-trust security measures to ensure data privacy, confidentiality, and integrity in wireless networks. Motivated by the relevance of this subject in the future communication networks, in this work, we present a comprehensive survey of RF fingerprinting approaches ranging from a traditional view to the most recent deep learning (DL) based algorithms. Existing surveys have mostly focused on a constrained presentation of the wireless fingerprinting approaches, however, many aspects remain untold. In this work, however, we mitigate this by addressing every aspect - background on signal intelligence (SIGINT), applications, relevant DL algorithms, systematic literature review of RF fingerprinting techniques spanning the past two decades, discussion on datasets, and potential research avenues - necessary to elucidate this topic to the reader in an encyclopedic manner.


Adversarial Attacks against Windows PE Malware Detection: A Survey of the State-of-the-Art

arXiv.org Artificial Intelligence

The malware has been being one of the most damaging threats to computers that span across multiple operating systems and various file formats. To defend against the ever-increasing and ever-evolving threats of malware, tremendous efforts have been made to propose a variety of malware detection methods that attempt to effectively and efficiently detect malware. Recent studies have shown that, on the one hand, existing ML and DL enable the superior detection of newly emerging and previously unseen malware. However, on the other hand, ML and DL models are inherently vulnerable to adversarial attacks in the form of adversarial examples, which are maliciously generated by slightly and carefully perturbing the legitimate inputs to confuse the targeted models. Basically, adversarial attacks are initially extensively studied in the domain of computer vision, and some quickly expanded to other domains, including NLP, speech recognition and even malware detection. In this paper, we focus on malware with the file format of portable executable (PE) in the family of Windows operating systems, namely Windows PE malware, as a representative case to study the adversarial attack methods in such adversarial settings. To be specific, we start by first outlining the general learning framework of Windows PE malware detection based on ML/DL and subsequently highlighting three unique challenges of performing adversarial attacks in the context of PE malware. We then conduct a comprehensive and systematic review to categorize the state-of-the-art adversarial attacks against PE malware detection, as well as corresponding defenses to increase the robustness of PE malware detection. We conclude the paper by first presenting other related attacks against Windows PE malware detection beyond the adversarial attacks and then shedding light on future research directions and opportunities.


Artificial Intelligence Ethics and Safety: practical tools for creating "good" models

arXiv.org Artificial Intelligence

The AI Robotics Ethics Society (AIRES) is a non-profit organization founded in 2018 by Aaron Hui to promote awareness and the importance of ethical implementation and regulation of AI. AIRES is now an organization with chapters at universities such as UCLA (Los Angeles), USC (University of Southern California), Caltech (California Institute of Technology), Stanford University, Cornell University, Brown University, and the Pontifical Catholic University of Rio Grande do Sul (Brazil). AIRES at PUCRS is the first international chapter of AIRES, and as such, we are committed to promoting and enhancing the AIRES Mission. Our mission is to focus on educating the AI leaders of tomorrow in ethical principles to ensure that AI is created ethically and responsibly. As there are still few proposals for how we should implement ethical principles and normative guidelines in the practice of AI system development, the goal of this work is to try to bridge this gap between discourse and praxis. Between abstract principles and technical implementation. In this work, we seek to introduce the reader to the topic of AI Ethics and Safety. At the same time, we present several tools to help developers of intelligent systems develop "good" models. This work is a developing guide published in English and Portuguese. Contributions and suggestions are welcome.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Explainable AI for B5G/6G: Technical Aspects, Use Cases, and Research Challenges

arXiv.org Artificial Intelligence

When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and, more importantly, an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made every second. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed data-intensive AI decision-making beyond designers and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black box AI decision-making process. This survey paper highlights the need for XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for building 6G systems. This research aligns with goals 9, 11, 16, and 17 of the United Nations Sustainable Development Goals (UN-SDG), promoting innovation and building infrastructure, sustainable and inclusive human settlement, advancing justice and strong institutions, and fostering partnership at the global level.


Using Shapley Values and Variational Autoencoders to Explain Predictive Models with Dependent Mixed Features

arXiv.org Machine Learning

Explainable artificial intelligence (XAI) and interpretable machine learning (IML) have become active research fields in recent years (Adadi and Berrada 2018; Molnar 2019). This is a natural consequence as complex machine learning (ML) models are now applied to solve supervised learning problems in many high-risk areas: cancer prognosis (Kourou et al. 2015), credit scoring (Kvamme et al. 2018), and money laundering detection (Jullum, Løland, et al. 2020). The high prediction accuracy of complex ML models often comes at the expense of model interpretability. As the goal of science is to gain knowledge from the collected data, the use of black-box models hinders the understanding of the underlying relationship between the features and the response, and thereby curtail scientific discovery. Model explanation frameworks from the XAI field extract the hidden knowledge about the underlying data structure captured by a black-box model, and thereby make the model's decision-making process transparent. This is crucial for, e.g., medical researchers that apply an ML model to obtain well-performing predictions, but who simultaneously also strive to discover important risk factors. Another driving factor is the Right to Explanation legislation in EU's General Data Protection Regulation (GDPR) (European Commission 2016).


Inter-Domain Fusion for Enhanced Intrusion Detection in Power Systems: An Evidence Theoretic and Meta-Heuristic Approach

arXiv.org Artificial Intelligence

False alerts due to misconfigured/ compromised IDS in ICS networks can lead to severe economic and operational damage. To solve this problem, research has focused on leveraging deep learning techniques that help reduce false alerts. However, a shortcoming is that these works often require or implicitly assume the physical and cyber sensors to be trustworthy. Implicit trust of data is a major problem with using artificial intelligence or machine learning for CPS security, because during critical attack detection time they are more at risk, with greater likelihood and impact, of also being compromised. To address this shortcoming, the problem is reframed on how to make good decisions given uncertainty. Then, the decision is detection, and the uncertainty includes whether the data used for ML-based IDS is compromised. Thus, this work presents an approach for reducing false alerts in CPS power systems by dealing uncertainty without the knowledge of prior distribution of alerts. Specifically, an evidence theoretic based approach leveraging Dempster Shafer combination rules are proposed for reducing false alerts. A multi-hypothesis mass function model is designed that leverages probability scores obtained from various supervised-learning classifiers. Using this model, a location-cum-domain based fusion framework is proposed and evaluated with different combination rules, that fuse multiple evidence from inter-domain and intra-domain sensors. The approach is demonstrated in a cyber-physical power system testbed with Man-In-The-Middle attack emulation in a large-scale synthetic electric grid. For evaluating the performance, plausibility, belief, pignistic, etc. metrics as decision functions are considered. To improve the performance, a multi-objective based genetic algorithm is proposed for feature selection considering the decision metrics as the fitness function.


Neural Embeddings of Urban Big Data Reveal Emergent Structures in Cities

arXiv.org Artificial Intelligence

In this study, we propose using a neural embedding model-graph neural network (GNN)- that leverages the heterogeneous features of urban areas and their interactions captured by human mobility network to obtain vector representations of these areas. Using large-scale high-resolution mobility data sets from millions of aggregated and anonymized mobile phone users in 16 metropolitan counties in the United States, we demonstrate that our embeddings encode complex relationships among features related to urban components (such as distribution of facilities) and population attributes and activities. The spatial gradient in each direction from city center to suburbs is measured using clustered representations and the shared characteristics among urban areas in the same cluster. Furthermore, we show that embeddings generated by a model trained on a different county can capture 50% to 60% of the emergent spatial structure in another county, allowing us to make cross-county comparisons in a quantitative way. Our GNN-based framework overcomes the limitations of previous methods used for examining spatial structures and is highly scalable. The findings reveal non-linear relationships among urban components and anisotropic spatial gradients in cities. Since the identified spatial structures and gradients capture the combined effects of various mechanisms, such as segregation, disparate facility distribution, and human mobility, the findings could help identify the limitations of the current city structure to inform planning decisions and policies. Also, the model and findings set the stage for a variety of research in urban planning, engineering and social science through integrated understanding of how the complex interactions between urban components and population activities and attributes shape the spatial structures in cities.


Ceasing hate withMoH: Hate Speech Detection in Hindi-English Code-Switched Language

arXiv.org Artificial Intelligence

Social media has become a bedrock for people to voice their opinions worldwide. Due to the greater sense of freedom with the anonymity feature, it is possible to disregard social etiquette online and attack others without facing severe consequences, inevitably propagating hate speech. The current measures to sift the online content and offset the hatred spread do not go far enough. One factor contributing to this is the prevalence of regional languages in social media and the paucity of language flexible hate speech detectors. The proposed work focuses on analyzing hate speech in Hindi-English code-switched language. Our method explores transformation techniques to capture precise text representation. To contain the structure of data and yet use it with existing algorithms, we developed MoH or Map Only Hindi, which means "Love" in Hindi. MoH pipeline consists of language identification, Roman to Devanagari Hindi transliteration using a knowledge base of Roman Hindi words. Finally, it employs the fine-tuned Multilingual Bert and MuRIL language models. We conducted several quantitative experiment studies on three datasets and evaluated performance using Precision, Recall, and F1 metrics. The first experiment studies MoH mapped text's performance with classical machine learning models and shows an average increase of 13% in F1 scores. The second compares the proposed work's scores with those of the baseline models and offers a rise in performance by 6%. Finally, the third reaches the proposed MoH technique with various data simulations using the existing transliteration library. Here, MoH outperforms the rest by 15%. Our results demonstrate a significant improvement in the state-of-the-art scores on all three datasets.


Trustworthy AI: From Principles to Practices

arXiv.org Artificial Intelligence

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.