Plotting

Results


Artificial Intelligence Ethics and Safety: practical tools for creating "good" models

arXiv.org Artificial Intelligence

The AI Robotics Ethics Society (AIRES) is a non-profit organization founded in 2018 by Aaron Hui to promote awareness and the importance of ethical implementation and regulation of AI. AIRES is now an organization with chapters at universities such as UCLA (Los Angeles), USC (University of Southern California), Caltech (California Institute of Technology), Stanford University, Cornell University, Brown University, and the Pontifical Catholic University of Rio Grande do Sul (Brazil). AIRES at PUCRS is the first international chapter of AIRES, and as such, we are committed to promoting and enhancing the AIRES Mission. Our mission is to focus on educating the AI leaders of tomorrow in ethical principles to ensure that AI is created ethically and responsibly. As there are still few proposals for how we should implement ethical principles and normative guidelines in the practice of AI system development, the goal of this work is to try to bridge this gap between discourse and praxis. Between abstract principles and technical implementation. In this work, we seek to introduce the reader to the topic of AI Ethics and Safety. At the same time, we present several tools to help developers of intelligent systems develop "good" models. This work is a developing guide published in English and Portuguese. Contributions and suggestions are welcome.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Ceasing hate withMoH: Hate Speech Detection in Hindi-English Code-Switched Language

arXiv.org Artificial Intelligence

Social media has become a bedrock for people to voice their opinions worldwide. Due to the greater sense of freedom with the anonymity feature, it is possible to disregard social etiquette online and attack others without facing severe consequences, inevitably propagating hate speech. The current measures to sift the online content and offset the hatred spread do not go far enough. One factor contributing to this is the prevalence of regional languages in social media and the paucity of language flexible hate speech detectors. The proposed work focuses on analyzing hate speech in Hindi-English code-switched language. Our method explores transformation techniques to capture precise text representation. To contain the structure of data and yet use it with existing algorithms, we developed MoH or Map Only Hindi, which means "Love" in Hindi. MoH pipeline consists of language identification, Roman to Devanagari Hindi transliteration using a knowledge base of Roman Hindi words. Finally, it employs the fine-tuned Multilingual Bert and MuRIL language models. We conducted several quantitative experiment studies on three datasets and evaluated performance using Precision, Recall, and F1 metrics. The first experiment studies MoH mapped text's performance with classical machine learning models and shows an average increase of 13% in F1 scores. The second compares the proposed work's scores with those of the baseline models and offers a rise in performance by 6%. Finally, the third reaches the proposed MoH technique with various data simulations using the existing transliteration library. Here, MoH outperforms the rest by 15%. Our results demonstrate a significant improvement in the state-of-the-art scores on all three datasets.


Trustworthy AI: From Principles to Practices

arXiv.org Artificial Intelligence

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.


Trustworthy AI: A Computational Perspective

arXiv.org Artificial Intelligence

In the past few decades, artificial intelligence (AI) technology has experienced swift developments, changing everyone's daily life and profoundly altering the course of human society. The intention of developing AI is to benefit humans, by reducing human labor, bringing everyday convenience to human lives, and promoting social good. However, recent research and AI applications show that AI can cause unintentional harm to humans, such as making unreliable decisions in safety-critical scenarios or undermining fairness by inadvertently discriminating against one group. Thus, trustworthy AI has attracted immense attention recently, which requires careful consideration to avoid the adverse effects that AI may bring to humans, so that humans can fully trust and live in harmony with AI technologies. Recent years have witnessed a tremendous amount of research on trustworthy AI. In this survey, we present a comprehensive survey of trustworthy AI from a computational perspective, to help readers understand the latest technologies for achieving trustworthy AI. Trustworthy AI is a large and complex area, involving various dimensions. In this work, we focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being. For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems. We also discuss the accordant and conflicting interactions among different dimensions and discuss potential aspects for trustworthy AI to investigate in the future.


Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular Networks

arXiv.org Artificial Intelligence

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


Fast, Accurate and Interpretable Time Series Classification Through Randomization

arXiv.org Machine Learning

Time series classification (TSC) aims to predict the class label of a given time series, which is critical to a rich set of application areas such as economics and medicine. State-of-the-art TSC methods have mostly focused on classification accuracy and efficiency, without considering the interpretability of their classifications, which is an important property required by modern applications such as appliance modeling and legislation such as the European General Data Protection Regulation. To address this gap, we propose a novel TSC method - the Randomized-Supervised Time Series Forest (r-STSF). r-STSF is highly efficient, achieves state-of-the-art classification accuracy and enables interpretability. r-STSF takes an efficient interval-based approach to classify time series according to aggregate values of discriminatory sub-series (intervals). To achieve state-of-the-art accuracy, r-STSF builds an ensemble of randomized trees using the discriminatory sub-series. It uses four time series representations, nine aggregation functions and a supervised binary-inspired search combined with a feature ranking metric to identify highly discriminatory sub-series. The discriminatory sub-series enable interpretable classifications. Experiments on extensive datasets show that r-STSF achieves state-of-the-art accuracy while being orders of magnitude faster than most existing TSC methods. It is the only classifier from the state-of-the-art group that enables interpretability. Our findings also highlight that r-STSF is the best TSC method when classifying complex time series datasets.


MTH-IDS: A Multi-Tiered Hybrid Intrusion Detection System for Internet of Vehicles

arXiv.org Artificial Intelligence

Modern vehicles, including connected vehicles and autonomous vehicles, nowadays involve many electronic control units connected through intra-vehicle networks to implement various functionalities and perform actions. Modern vehicles are also connected to external networks through vehicle-to-everything technologies, enabling their communications with other vehicles, infrastructures, and smart devices. However, the improving functionality and connectivity of modern vehicles also increase their vulnerabilities to cyber-attacks targeting both intra-vehicle and external networks due to the large attack surfaces. To secure vehicular networks, many researchers have focused on developing intrusion detection systems (IDSs) that capitalize on machine learning methods to detect malicious cyber-attacks. In this paper, the vulnerabilities of intra-vehicle and external networks are discussed, and a multi-tiered hybrid IDS that incorporates a signature-based IDS and an anomaly-based IDS is proposed to detect both known and unknown attacks on vehicular networks. Experimental results illustrate that the proposed system can detect various types of known attacks with 99.99% accuracy on the CAN-intrusion-dataset representing the intra-vehicle network data and 99.88% accuracy on the CICIDS2017 dataset illustrating the external vehicular network data. For the zero-day attack detection, the proposed system achieves high F1-scores of 0.963 and 0.800 on the above two datasets, respectively. The average processing time of each data packet on a vehicle-level machine is less than 0.6 ms, which shows the feasibility of implementing the proposed system in real-time vehicle systems. This emphasizes the effectiveness and efficiency of the proposed IDS.


Machine Learning Towards Intelligent Systems: Applications, Challenges, and Opportunities

arXiv.org Artificial Intelligence

The emergence and continued reliance on the Internet and related technologies has resulted in the generation of large amounts of data that can be made available for analyses. However, humans do not possess the cognitive capabilities to understand such large amounts of data. Machine learning (ML) provides a mechanism for humans to process large amounts of data, gain insights about the behavior of the data, and make more informed decision based on the resulting analysis. ML has applications in various fields. This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media. Within these fields, there are multiple unique challenges that exist. However, ML can provide solutions to these challenges, as well as create further research opportunities. Accordingly, this work surveys some of the challenges facing the aforementioned fields and presents some of the previous literature works that tackled them. Moreover, it suggests several research opportunities that benefit from the use of ML to address these challenges.


Cyber Threat Intelligence for Secure Smart City

arXiv.org Artificial Intelligence

Sujata238dash@gmail.com Abstract--Smart city improved the quality of life for the The rest of this paper is structured as follows. York start becoming more intelligent. These cities are providing services through technology such as IoT and Cyber-A. Smart City Physical Systems (CPS), where they are connected through a The smart city concept refers to urban systems that network to monitor, control and automate the city services to integrated with ICT to improve city services in terms of provide the best quality of life for the citizens [1]. The smart city contains a huge number of sensors Smart city technologies exchange and process different that continuously generate a tremendous amount of sensitive types of data to provide services. These data can be sensitive data such as location coordinates, credit card numbers, and and critical which imposes security and privacy requirements. These data are transmitted through the However, the characteristics of smart city technology such as network to data centers for processing and analysis to take the IoT and CPS in terms of resources limitation such as power, appropriate decisions such as managing traffic and energy in memory, and processing imposes challenges to run a smart city [6][3]. Therefore, different attacks Sensors that generate data and devices that handle the data target smart city infrastructure including Distributed Denial of in a smart city have vulnerabilities that can be exploited by Service (DDoS) using IoT devices by infecting IoT devices by cybercriminals.