Goto

Collaborating Authors

Results


Artificial Intelligence Ethics and Safety: practical tools for creating "good" models

arXiv.org Artificial Intelligence

The AI Robotics Ethics Society (AIRES) is a non-profit organization founded in 2018 by Aaron Hui to promote awareness and the importance of ethical implementation and regulation of AI. AIRES is now an organization with chapters at universities such as UCLA (Los Angeles), USC (University of Southern California), Caltech (California Institute of Technology), Stanford University, Cornell University, Brown University, and the Pontifical Catholic University of Rio Grande do Sul (Brazil). AIRES at PUCRS is the first international chapter of AIRES, and as such, we are committed to promoting and enhancing the AIRES Mission. Our mission is to focus on educating the AI leaders of tomorrow in ethical principles to ensure that AI is created ethically and responsibly. As there are still few proposals for how we should implement ethical principles and normative guidelines in the practice of AI system development, the goal of this work is to try to bridge this gap between discourse and praxis. Between abstract principles and technical implementation. In this work, we seek to introduce the reader to the topic of AI Ethics and Safety. At the same time, we present several tools to help developers of intelligent systems develop "good" models. This work is a developing guide published in English and Portuguese. Contributions and suggestions are welcome.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Ceasing hate withMoH: Hate Speech Detection in Hindi-English Code-Switched Language

arXiv.org Artificial Intelligence

Social media has become a bedrock for people to voice their opinions worldwide. Due to the greater sense of freedom with the anonymity feature, it is possible to disregard social etiquette online and attack others without facing severe consequences, inevitably propagating hate speech. The current measures to sift the online content and offset the hatred spread do not go far enough. One factor contributing to this is the prevalence of regional languages in social media and the paucity of language flexible hate speech detectors. The proposed work focuses on analyzing hate speech in Hindi-English code-switched language. Our method explores transformation techniques to capture precise text representation. To contain the structure of data and yet use it with existing algorithms, we developed MoH or Map Only Hindi, which means "Love" in Hindi. MoH pipeline consists of language identification, Roman to Devanagari Hindi transliteration using a knowledge base of Roman Hindi words. Finally, it employs the fine-tuned Multilingual Bert and MuRIL language models. We conducted several quantitative experiment studies on three datasets and evaluated performance using Precision, Recall, and F1 metrics. The first experiment studies MoH mapped text's performance with classical machine learning models and shows an average increase of 13% in F1 scores. The second compares the proposed work's scores with those of the baseline models and offers a rise in performance by 6%. Finally, the third reaches the proposed MoH technique with various data simulations using the existing transliteration library. Here, MoH outperforms the rest by 15%. Our results demonstrate a significant improvement in the state-of-the-art scores on all three datasets.


Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular Networks

arXiv.org Artificial Intelligence

The Controller Area Network (CAN) bus works as an important protocol in the real-time In-Vehicle Network (IVN) systems for its simple, suitable, and robust architecture. The risk of IVN devices has still been insecure and vulnerable due to the complex data-intensive architectures which greatly increase the accessibility to unauthorized networks and the possibility of various types of cyberattacks. Therefore, the detection of cyberattacks in IVN devices has become a growing interest. With the rapid development of IVNs and evolving threat types, the traditional machine learning-based IDS has to update to cope with the security requirements of the current environment. Nowadays, the progression of deep learning, deep transfer learning, and its impactful outcome in several areas has guided as an effective solution for network intrusion detection. This manuscript proposes a deep transfer learning-based IDS model for IVN along with improved performance in comparison to several other existing models. The unique contributions include effective attribute selection which is best suited to identify malicious CAN messages and accurately detect the normal and abnormal activities, designing a deep transfer learning-based LeNet model, and evaluating considering real-world data. To this end, an extensive experimental performance evaluation has been conducted. The architecture along with empirical analyses shows that the proposed IDS greatly improves the detection accuracy over the mainstream machine learning, deep learning, and benchmark deep transfer learning models and has demonstrated better performance for real-time IVN security.


Fast, Accurate and Interpretable Time Series Classification Through Randomization

arXiv.org Machine Learning

Time series classification (TSC) aims to predict the class label of a given time series, which is critical to a rich set of application areas such as economics and medicine. State-of-the-art TSC methods have mostly focused on classification accuracy and efficiency, without considering the interpretability of their classifications, which is an important property required by modern applications such as appliance modeling and legislation such as the European General Data Protection Regulation. To address this gap, we propose a novel TSC method - the Randomized-Supervised Time Series Forest (r-STSF). r-STSF is highly efficient, achieves state-of-the-art classification accuracy and enables interpretability. r-STSF takes an efficient interval-based approach to classify time series according to aggregate values of discriminatory sub-series (intervals). To achieve state-of-the-art accuracy, r-STSF builds an ensemble of randomized trees using the discriminatory sub-series. It uses four time series representations, nine aggregation functions and a supervised binary-inspired search combined with a feature ranking metric to identify highly discriminatory sub-series. The discriminatory sub-series enable interpretable classifications. Experiments on extensive datasets show that r-STSF achieves state-of-the-art accuracy while being orders of magnitude faster than most existing TSC methods. It is the only classifier from the state-of-the-art group that enables interpretability. Our findings also highlight that r-STSF is the best TSC method when classifying complex time series datasets.


Machine Learning Towards Intelligent Systems: Applications, Challenges, and Opportunities

arXiv.org Artificial Intelligence

The emergence and continued reliance on the Internet and related technologies has resulted in the generation of large amounts of data that can be made available for analyses. However, humans do not possess the cognitive capabilities to understand such large amounts of data. Machine learning (ML) provides a mechanism for humans to process large amounts of data, gain insights about the behavior of the data, and make more informed decision based on the resulting analysis. ML has applications in various fields. This review focuses on some of the fields and applications such as education, healthcare, network security, banking and finance, and social media. Within these fields, there are multiple unique challenges that exist. However, ML can provide solutions to these challenges, as well as create further research opportunities. Accordingly, this work surveys some of the challenges facing the aforementioned fields and presents some of the previous literature works that tackled them. Moreover, it suggests several research opportunities that benefit from the use of ML to address these challenges.


Cyber Threat Intelligence for Secure Smart City

arXiv.org Artificial Intelligence

Sujata238dash@gmail.com Abstract--Smart city improved the quality of life for the The rest of this paper is structured as follows. York start becoming more intelligent. These cities are providing services through technology such as IoT and Cyber-A. Smart City Physical Systems (CPS), where they are connected through a The smart city concept refers to urban systems that network to monitor, control and automate the city services to integrated with ICT to improve city services in terms of provide the best quality of life for the citizens [1]. The smart city contains a huge number of sensors Smart city technologies exchange and process different that continuously generate a tremendous amount of sensitive types of data to provide services. These data can be sensitive data such as location coordinates, credit card numbers, and and critical which imposes security and privacy requirements. These data are transmitted through the However, the characteristics of smart city technology such as network to data centers for processing and analysis to take the IoT and CPS in terms of resources limitation such as power, appropriate decisions such as managing traffic and energy in memory, and processing imposes challenges to run a smart city [6][3]. Therefore, different attacks Sensors that generate data and devices that handle the data target smart city infrastructure including Distributed Denial of in a smart city have vulnerabilities that can be exploited by Service (DDoS) using IoT devices by infecting IoT devices by cybercriminals.


Technologies for Trustworthy Machine Learning: A Survey in a Socio-Technical Context

arXiv.org Artificial Intelligence

Concerns about the societal impact of AI-based services and systems has encouraged governments and other organisations around the world to propose AI policy frameworks to address fairness, accountability, transparency and related topics. To achieve the objectives of these frameworks, the data and software engineers who build machine-learning systems require knowledge about a variety of relevant supporting tools and techniques. In this paper we provide an overview of technologies that support building trustworthy machine learning systems, i.e., systems whose properties justify that people place trust in them. We argue that four categories of system properties are instrumental in achieving the policy objectives, namely fairness, explainability, auditability and safety & security (FEAS). We discuss how these properties need to be considered across all stages of the machine learning life cycle, from data collection through run-time model inference. As a consequence, we survey in this paper the main technologies with respect to all four of the FEAS properties, for data-centric as well as model-centric stages of the machine learning system life cycle. We conclude with an identification of open research problems, with a particular focus on the connection between trustworthy machine learning technologies and their implications for individuals and society.


A Survey of Machine Learning Methods and Challenges for Windows Malware Classification

arXiv.org Machine Learning

Malware classification is a difficult problem, to which machine learning methods have been applied for decades. Yet progress has often been slow, in part due to a number of unique difficulties with the task that occur through all stages of the developing a machine learning system: data collection, labeling, feature creation and selection, model selection, and evaluation. In this survey we will review a number of the current methods and challenges related to malware classification, including data collection, feature extraction, and model construction, and evaluation. Our discussion will include thoughts on the constraints that must be considered for machine learning based solutions in this domain, and yet to be tackled problems for which machine learning could also provide a solution. This survey aims to be useful both to cybersecurity practitioners who wish to learn more about how machine learning can be applied to the malware problem, and to give data scientists the necessary background into the challenges in this uniquely complicated space.


Adversarial Machine Learning in Network Intrusion Detection Systems

arXiv.org Machine Learning

It is becoming evident each and every day that machine learning algorithms are achieving impressive results in domains in which it is hard to specify a set of rules for their procedures. Examples of this phenomenon include industries like finance [49, 5], transportation [37], education [42, 22], health care [23] and tasks like image recognition [41, 16, 17], machine translation [43, 7], and speech recognition [46, 24, 53, 50]. Motivated by the ease of adoption and the increased availability of affordable computational power (especially cloud computing services), machine learning algorithms are being explored in almost every commercial application and are offering great promise for the future of automation. Facing such a vast adoption across multiple disciplines, some of their weaknesses are exposed and sometimes exploited by malicious actors. For example, a common challenge to these algorithms is "generalization" or "robustness", which is the ability of the algorithm to maintain performance whenever dealing with data coming from a different distribution with which it was trained. For a long period of time, the sole focus of machine learning researchers was improving the performance of machine learning systems (true positive rate, accuracy, etc.). Nowadays, the robustness of these systems can no longer be ignored; many of them have been shown to be highly vulnerable to intentional adversarial attacks.