Collaborating Authors


Human-in-the-Loop Methods for Data-Driven and Reinforcement Learning Systems Artificial Intelligence

Recent successes combine reinforcement learning algorithms and deep neural networks, despite reinforcement learning not being widely applied to robotics and real world scenarios. This can be attributed to the fact that current state-of-the-art, end-to-end reinforcement learning approaches still require thousands or millions of data samples to converge to a satisfactory policy and are subject to catastrophic failures during training. Conversely, in real world scenarios and after just a few data samples, humans are able to either provide demonstrations of the task, intervene to prevent catastrophic actions, or simply evaluate if the policy is performing correctly. This research investigates how to integrate these human interaction modalities to the reinforcement learning loop, increasing sample efficiency and enabling real-time reinforcement learning in robotics and real world scenarios. This novel theoretical foundation is called Cycle-of-Learning, a reference to how different human interaction modalities, namely, task demonstration, intervention, and evaluation, are cycled and combined to reinforcement learning algorithms. Results presented in this work show that the reward signal that is learned based upon human interaction accelerates the rate of learning of reinforcement learning algorithms and that learning from a combination of human demonstrations and interventions is faster and more sample efficient when compared to traditional supervised learning algorithms. Finally, Cycle-of-Learning develops an effective transition between policies learned using human demonstrations and interventions to reinforcement learning. The theoretical foundation developed by this research opens new research paths to human-agent teaming scenarios where autonomous agents are able to learn from human teammates and adapt to mission performance metrics in real-time and in real world scenarios.

Deep Reinforcement Learning for Autonomous Driving: A Survey Artificial Intelligence

With the development of deep representation learning, the domain of reinforcement learning (RL) has become a powerful learning framework now capable of learning complex policies in high dimensional environments. This review summarises deep reinforcement learning (DRL) algorithms, provides a taxonomy of automated driving tasks where (D)RL methods have been employed, highlights the key challenges algorithmically as well as in terms of deployment of real world autonomous driving agents, the role of simulators in training agents, and finally methods to evaluate, test and robustifying existing solutions in RL and imitation learning.

Learning Resilient Behaviors for Navigation Under Uncertainty Environments Artificial Intelligence

-- Deep reinforcement learning has great potential to acquire complex, adaptive behaviors for autonomous agents automatically. However, the underlying neural network polices have not been widely deployed in real-world applications, especially in these safety-critical tasks (e.g., autonomous driving). One of the reasons is that the learned policy cannot perform flexible and resilient behaviors as traditional methods to adapt to diverse environments. In this paper, we consider the problem that a mobile robot learns adaptive and resilient behaviors for navigating in unseen uncertain environments while avoiding collisions. We present a novel approach for uncertainty-aware navigation by introducing an uncertainty-aware predictor to model the environmental uncertainty, and we propose a novel uncertainty-aware navigation network to learn resilient behaviors in the prior unknown environments. T o train the proposed uncertainty-aware network more stably and efficiently, we present the temperature decay training paradigm, which balances exploration and exploitation during the training process. Our experimental evaluation demonstrates that our approach can learn resilient behaviors in diverse environments and generate adaptive trajectories according to environmental uncertainties. Videos of the experiments are available at . With the recent progress of machine learning techniques, deep reinforcement learning has been seen as a promising technique for autonomous systems to learn intelligent and complex behaviors in manipulation and motion planning tasks [1]-[3].

VariBAD: A Very Good Method for Bayes-Adaptive Deep RL via Meta-Learning Machine Learning

V ARIBAD: A V ERY G OOD M ETHOD FOR B AYES-A DAPTIVE D EEP RL VIA M ETA-L EARNING Luisa Zintgraf University of Oxford Kyriacos Shiarlis Latent Logic Maximilian Igl University of Oxford Sebastian Schulze University of Oxford Y arin Gal OA TML Group, University of Oxford Katja Hofmann Microsoft Research Shimon Whiteson University of Oxford Latent Logic A BSTRACT Trading off exploration and exploitation in an unknown environment is key to maximising expected return during learning. A Bayes-optimal policy, which does so optimally, conditions its actions not only on the environment state but on the agent's uncertainty about the environment. Computing a Bayes-optimal policy is however intractable for all but the smallest tasks. In this paper, we introduce variational Bayes-Adaptive Deep RL (variBAD), a way to meta-learn to perform approximate inference in an unknown environment, and incorporate task uncertainty directly during action selection. In a grid-world domain, we illustrate how variBAD performs structured online exploration as a function of task uncertainty. We also evaluate variBAD on MuJoCo domains widely used in meta-RL and show that it achieves higher return during training than existing methods. 1 I NTRODUCTION Reinforcement learning (RL) is typically concerned with finding an optimal policy that maximises expected return for a given Markov decision process (MDP) with an unknown reward and transition function. If these were known, the optimal policy could in theory be computed without interacting with the environment. By contrast, learning in an unknown environment typically requires trading off exploration (learning about the environment) and exploitation (taking promising actions). Balancing this tradeoff is key to maximising expected return during learning . A Bayes-optimal policy, which does so optimally, conditions actions not only on the environment state but on the agent's own uncertainty about the current MDP . In principle, a Bayes-optimal policy can be computed using the framework of Bayes-adaptive Markov decision processes (BAMDPs) (Martin, 1967; Duff & Barto, 2002). The agent maintains a belief, i.e., a posterior distribution, over possible environments. Augmenting the state space of the underlying MDP with this posterior distribution yields a BAMDP, a special case of a belief MDP (Kaelbling et al., 1998).

Tackling Climate Change with Machine Learning Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.

Generative Adversarial Imagination for Sample Efficient Deep Reinforcement Learning Artificial Intelligence

Reinforcement learning has seen great advancements in the past five years. The successful introduction of deep learning in place of more traditional methods allowed reinforcement learning to scale to very complex domains achieving super-human performance in environments like the game of Go or numerous video games. Despite great successes in multiple domains, these new methods suffer from their own issues that make them often inapplicable to the real world problems. Extreme lack of data efficiency, together with huge variance and difficulty in enforcing safety constraints, is one of the three most prominent issues in the field. Usually, millions of data points sampled from the environment are necessary for these algorithms to converge to acceptable policies. This thesis proposes novel Generative Adversarial Imaginative Reinforcement Learning algorithm. It takes advantage of the recent introduction of highly effective generative adversarial models, and Markov property that underpins reinforcement learning setting, to model dynamics of the real environment within the internal imagination module. Rollouts from the imagination are then used to artificially simulate the real environment in a standard reinforcement learning process to avoid, often expensive and dangerous, trial and error in the real environment. Experimental results show that the proposed algorithm more economically utilises experience from the real environment than the current state-of-the-art Rainbow DQN algorithm, and thus makes an important step towards sample efficient deep reinforcement learning.

Artificial Intelligence : from Research to Application ; the Upper-Rhine Artificial Intelligence Symposium (UR-AI 2019) Artificial Intelligence

The TriRhenaTech alliance universities and their partners presented their competences in the field of artificial intelligence and their cross-border cooperations with the industry at the tri-national conference 'Artificial Intelligence : from Research to Application' on March 13th, 2019 in Offenburg. The TriRhenaTech alliance is a network of universities in the Upper Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, and Offenburg, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.

An Introduction to Deep Reinforcement Learning Artificial Intelligence

Deep reinforcement learning is the combination of reinforcement learning (RL) and deep learning. This field of research has been able to solve a wide range of complex decision-making tasks that were previously out of reach for a machine. Thus, deep RL opens up many new applications in domains such as healthcare, robotics, smart grids, finance, and many more. This manuscript provides an introduction to deep reinforcement learning models, algorithms and techniques. Particular focus is on the aspects related to generalization and how deep RL can be used for practical applications. We assume the reader is familiar with basic machine learning concepts.

Deep Reinforcement Learning Machine Learning

We discuss deep reinforcement learning in an overview style. We draw a big picture, filled with details. We discuss six core elements, six important mechanisms, and twelve applications, focusing on contemporary work, and in historical contexts. We start with background of artificial intelligence, machine learning, deep learning, and reinforcement learning (RL), with resources. Next we discuss RL core elements, including value function, policy, reward, model, exploration vs. exploitation, and representation. Then we discuss important mechanisms for RL, including attention and memory, unsupervised learning, hierarchical RL, multi-agent RL, relational RL, and learning to learn. After that, we discuss RL applications, including games, robotics, natural language processing (NLP), computer vision, finance, business management, healthcare, education, energy, transportation, computer systems, and, science, engineering, and art. Finally we summarize briefly, discuss challenges and opportunities, and close with an epilogue.

The Dreaming Variational Autoencoder for Reinforcement Learning Environments Artificial Intelligence

Reinforcement learning has shown great potential in generalizing over raw sensory data using only a single neural network for value optimization. There are several challenges in the current state-of-the-art reinforcement learning algorithms that prevent them from converging towards the global optima. It is likely that the solution to these problems lies in short- and long-term planning, exploration and memory management for reinforcement learning algorithms. Games are often used to benchmark reinforcement learning algorithms as they provide a flexible, reproducible, and easy to control environment. Regardless, few games feature a state-space where results in exploration, memory, and planning are easily perceived. This paper presents The Dreaming Variational Autoencoder (DVAE), a neural network based generative modeling architecture for exploration in environments with sparse feedback. We further present Deep Maze, a novel and flexible maze engine that challenges DVAE in partial and fully-observable state-spaces, long-horizon tasks, and deterministic and stochastic problems. We show initial findings and encourage further work in reinforcement learning driven by generative exploration.