Plotting

Results


Latent gaze information in highly dynamic decision-tasks

arXiv.org Artificial Intelligence

Digitization is penetrating more and more areas of life. Tasks are increasingly being completed digitally, and are therefore not only fulfilled faster, more efficiently but also more purposefully and successfully. The rapid developments in the field of artificial intelligence in recent years have played a major role in this, as they brought up many helpful approaches to build on. At the same time, the eyes, their movements, and the meaning of these movements are being progressively researched. The combination of these developments has led to exciting approaches. In this dissertation, I present some of these approaches which I worked on during my Ph.D. First, I provide insight into the development of models that use artificial intelligence to connect eye movements with visual expertise. This is demonstrated for two domains or rather groups of people: athletes in decision-making actions and surgeons in arthroscopic procedures. The resulting models can be considered as digital diagnostic models for automatic expertise recognition. Furthermore, I show approaches that investigate the transferability of eye movement patterns to different expertise domains and subsequently, important aspects of techniques for generalization. Finally, I address the temporal detection of confusion based on eye movement data. The results suggest the use of the resulting model as a clock signal for possible digital assistance options in the training of young professionals. An interesting aspect of my research is that I was able to draw on very valuable data from DFB youth elite athletes as well as on long-standing experts in arthroscopy. In particular, the work with the DFB data attracted the interest of radio and print media, namely DeutschlandFunk Nova and SWR DasDing. All resulting articles presented here have been published in internationally renowned journals or at conferences.


Self-directed Machine Learning

arXiv.org Artificial Intelligence

Conventional machine learning (ML) relies heavily on manual design from machine learning experts to decide learning tasks, data, models, optimization algorithms, and evaluation metrics, which is labor-intensive, time-consuming, and cannot learn autonomously like humans. In education science, self-directed learning, where human learners select learning tasks and materials on their own without requiring hands-on guidance, has been shown to be more effective than passive teacher-guided learning. Inspired by the concept of self-directed human learning, we introduce the principal concept of Self-directed Machine Learning (SDML) and propose a framework for SDML. Specifically, we design SDML as a self-directed learning process guided by self-awareness, including internal awareness and external awareness. Our proposed SDML process benefits from self task selection, self data selection, self model selection, self optimization strategy selection and self evaluation metric selection through self-awareness without human guidance. Meanwhile, the learning performance of the SDML process serves as feedback to further improve self-awareness. We propose a mathematical formulation for SDML based on multi-level optimization. Furthermore, we present case studies together with potential applications of SDML, followed by discussing future research directions. We expect that SDML could enable machines to conduct human-like self-directed learning and provide a new perspective towards artificial general intelligence.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Programming Knowledge Tracing: A Comprehensive Dataset and A New Model

arXiv.org Artificial Intelligence

In this paper, we study knowledge tracing in the domain of programming education and make two important contributions. First, we harvest and publish so far the most comprehensive dataset, namely BePKT, which covers various online behaviors in an OJ system, including programming text problems, knowledge annotations, user-submitted code and system-logged events. Second, we propose a new model PDKT to exploit the enriched context for accurate student behavior prediction. More specifically, we construct a bipartite graph for programming problem embedding, and design an improved pre-training model PLCodeBERT for code embedding, as well as a double-sequence RNN model with exponential decay attention for effective feature fusion. Experimental results on the new dataset BePKT show that our proposed model establishes state-of-the-art performance in programming knowledge tracing. In addition, we verify that our code embedding strategy based on PLCodeBERT is complementary to existing knowledge tracing models to further enhance their accuracy. As a side product, PLCodeBERT also results in better performance in other programming-related tasks such as code clone detection.


Finetuning Transformer Models to Build ASAG System

arXiv.org Artificial Intelligence

Research towards creating systems for automatic grading of student answers to quiz and exam questions in educational settings has been ongoing since 1966. Over the years, the problem was divided into many categories. Among them, grading text answers were divided into short answer grading, and essay grading. The goal of this work was to develop an ML-based short answer grading system. I hence built a system which uses finetuning on Roberta Large Model pretrained on STS benchmark dataset and have also created an interface to show the production readiness of the system. I evaluated the performance of the system on the Mohler extended dataset and SciEntsBank Dataset. The developed system achieved a Pearsons Correlation of 0.82 and RMSE of 0.7 on the Mohler Dataset which beats the SOTA performance on this dataset which is correlation of 0.805 and RMSE of 0.793. Additionally, Pearsons Correlation of 0.79 and RMSE of 0.56 was achieved on the SciEntsBank Dataset, which only reconfirms the robustness of the system. A few observations during achieving these results included usage of batch size of 1 produced better results than using batch size of 16 or 32 and using huber loss as loss function performed well on this regression task. The system was tried and tested on train and validation splits using various random seeds and still has been tweaked to achieve a minimum of 0.76 of correlation and a maximum 0.15 (out of 1) RMSE on any dataset.


Multi-Task Learning in Natural Language Processing: An Overview

arXiv.org Artificial Intelligence

Deep learning approaches have achieved great success in the field of Natural Language Processing (NLP). However, deep neural models often suffer from overfitting and data scarcity problems that are pervasive in NLP tasks. In recent years, Multi-Task Learning (MTL), which can leverage useful information of related tasks to achieve simultaneous performance improvement on multiple related tasks, has been used to handle these problems. In this paper, we give an overview of the use of MTL in NLP tasks. We first review MTL architectures used in NLP tasks and categorize them into four classes, including the parallel architecture, hierarchical architecture, modular architecture, and generative adversarial architecture. Then we present optimization techniques on loss construction, data sampling, and task scheduling to properly train a multi-task model. After presenting applications of MTL in a variety of NLP tasks, we introduce some benchmark datasets. Finally, we make a conclusion and discuss several possible research directions in this field.


On the Opportunities and Risks of Foundation Models

arXiv.org Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.


A Classification of Artificial Intelligence Systems for Mathematics Education

arXiv.org Artificial Intelligence

This chapter provides an overview of the different Artificial Intelligence (AI) systems that are being used in contemporary digital tools for Mathematics Education (ME). It is aimed at researchers in AI and Machine Learning (ML), for whom we shed some light on the specific technologies that are being used in educational applications; and at researchers in ME, for whom we clarify: i) what the possibilities of the current AI technologies are, ii) what is still out of reach and iii) what is to be expected in the near future. We start our analysis by establishing a high-level taxonomy of AI tools that are found as components in digital ME applications. Then, we describe in detail how these AI tools, and in particular ML, are being used in two key applications, specifically AI-based calculators and intelligent tutoring systems. We finish the chapter with a discussion about student modeling systems and their relationship to artificial general intelligence.


15 Best Udacity Machine Learning Courses

#artificialintelligence

This is an intermediate-level free artificial intelligence course. This course will teach the basics of modern AI as well as some of the representative applications of AI including machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing. To understand this course, you should have some previous understanding of probability theory and linear algebra.


Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things

arXiv.org Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.