Goto

Collaborating Authors

Results


15 Best Udacity Machine Learning Courses

#artificialintelligence

This is an intermediate-level free artificial intelligence course. This course will teach the basics of modern AI as well as some of the representative applications of AI including machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing. To understand this course, you should have some previous understanding of probability theory and linear algebra.


Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things

arXiv.org Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


What Should I Learn First: Introducing LectureBank for NLP Education and Prerequisite Chain Learning

arXiv.org Machine Learning

Recent years have witnessed the rising popularity of Natural Language Processing (NLP) and related fields such as Artificial Intelligence (AI) and Machine Learning (ML). Many online courses and resources are available even for those without a strong background in the field. Often the student is curious about a specific topic but does not quite know where to begin studying. To answer the question of "what should one learn first," we apply an embedding-based method to learn prerequisite relations for course concepts in the domain of NLP. We introduce LectureBank, a dataset containing 1,352 English lecture files collected from university courses which are each classified according to an existing taxonomy as well as 208 manually-labeled prerequisite relation topics, which is publicly available. The dataset will be useful for educational purposes such as lecture preparation and organization as well as applications such as reading list generation. Additionally, we experiment with neural graph-based networks and non-neural classifiers to learn these prerequisite relations from our dataset.