Goto

Collaborating Authors

Results


Natural Language Processing

#artificialintelligence

By the end of this Specialization, you will have designed NLP applications that perform question-answering and sentiment analysis, created tools to translate languages and summarize text, and even built a chatbot! Learners should have a working knowledge of machine learning, intermediate Python including experience with a deep learning framework (e.g., TensorFlow, Keras), as well as proficiency in calculus, linear algebra, and statistics. Please make sure that you've completed course 3 - Natural Language Processing with Sequence Models - before starting this course. This Specialization is designed and taught by two experts in NLP, machine learning, and deep learning. Younes Bensouda Mourri is an Instructor of AI at Stanford University who also helped build the Deep Learning Specialization.


11 Best Natural Language Processing Online Courses

#artificialintelligence

In this course, you will learn NLP (natural language processing) with deep learning. This course will teach you word2vec and how to implement word2vec. You will also learn how to implement GloVe using gradient descent and alternating least squares. This course uses recurrent neural networks for named entity recognition. Along with that, you will learn how to implement recursive neural tensor networks for sentiment analysis. Let's see the topics covered in this course-


Natural Language Processing in TensorFlow

#artificialintelligence

If you are a software developer who wants to build scalable AI-powered algorithms, you need to understand how to use the tools to build them. This Specialization will teach you best practices for using TensorFlow, a popular open-source framework for machine learning. In Course 3 of the deeplearning.ai TensorFlow Specialization, you will build natural language processing systems using TensorFlow. You will learn to process text, including tokenizing and representing sentences as vectors, so that they can be input to a neural network.


Knowledge Tracing: A Survey

arXiv.org Artificial Intelligence

Humans ability to transfer knowledge through teaching is one of the essential aspects for human intelligence. A human teacher can track the knowledge of students to customize the teaching on students needs. With the rise of online education platforms, there is a similar need for machines to track the knowledge of students and tailor their learning experience. This is known as the Knowledge Tracing (KT) problem in the literature. Effectively solving the KT problem would unlock the potential of computer-aided education applications such as intelligent tutoring systems, curriculum learning, and learning materials' recommendation. Moreover, from a more general viewpoint, a student may represent any kind of intelligent agents including both human and artificial agents. Thus, the potential of KT can be extended to any machine teaching application scenarios which seek for customizing the learning experience for a student agent (i.e., a machine learning model). In this paper, we provide a comprehensive and systematic review for the KT literature. We cover a broad range of methods starting from the early attempts to the recent state-of-the-art methods using deep learning, while highlighting the theoretical aspects of models and the characteristics of benchmark datasets. Besides these, we shed light on key modelling differences between closely related methods and summarize them in an easy-to-understand format. Finally, we discuss current research gaps in the KT literature and possible future research and application directions.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


An AI-based Solution for Enhancing Delivery of Digital Learning for Future Teachers

arXiv.org Artificial Intelligence

However, up until the COVID-19 pandemic caused a seismic shift in the education sector, few educational institutions had fully developed digital learning models in place and adoption of digital models was ad-hoc or only partially integrated alongside traditional teaching modes [1]. In the wake of the disruptive impact of the pandemic, the education sector and more importantly educators have had to move rapidly to take up digital solutions to continue delivering learning. At the most rudimentary level, this has meant moving to online teaching through platforms such as Zoom, Google, Teams and Interactive Whiteboards and delivering pre-recorded educational materials via Learning Management Systems (e.g., Echo). Digital learning is now simply part of the education landscape both in the traditional education sector as well as within the context of corporate and workplace learning. A key challenge future teachers face when delivering educational content via digital learning is to be able to assess what the learner knows and understands, the depths of that knowledge and understanding and any gaps in that learning. Assessment also occurs in the context of the cohort and relevant band or level of learning. The Teachers Guide to Assessment produced by the Australian Capital Territory Government [2] identified that teachers and learning designers were particularly challenged by the assessment process, and that new technologies have the potential to transform existing digital teaching and learning practices through refined information gathering and the ability to enhance the nature of learner feedback. Artificial Intelligence (AI) is part of the next generation of digital learning, enabling educators to create learning content, stream content to suit individual learner needs and access and in turn respond to data based on learner performance and feedback [3]. AI has the capacity to provide significant benefits to teachers to deliver nuanced and personalised experiences to learners.


2021 Natural Language Processing in Python for Beginners

#artificialintelligence

It is designed to give you a complete understanding of Text Processing and Mining with the use of State-of-the-Art NLP algorithms in Python. We will learn Spacy in detail and we will also explore the uses of NLP in real-life. This course covers the basics of NLP to advance topics like word2vec, GloVe, Deep Learning for NLP like CNN, ANN, and LSTM. I will also show you how you can optimize your ML code by using various tools of sklean in python. At the end part of this course, you will learn how to generate poetry by using LSTM.


Top 5 Courses to Learn Natural Language Processing (NLP) for Beginners in 2021 - Best of Lot

#artificialintelligence

Hello guys, if you want to learn Natural Langauge Processing (NLP) and looking for the best online training courses then you have come to the right place. Earlier, I have shared the best courses to learn Data Science, Machine Learning, Tableau, and Power BI for Data visualization and In this article, I'll share the best online courses you can take online to learn Natural Langauge Processing or NLP. These are the best online courses from Udemy, Coursera, and Pluralsight, three of the most popular online learning platforms. They are created by experts and trusted by thousands of developers around the world and you can join them online to learn this in-demand skill from your home. Natural language processing is a science related to Artificial Intelligence and Computer Science that uses data to learn how to communicate like a human being and answer questions, translate texts, spell check, spam filtering, autocomplete, chatbots that you can interact with such as Siri and Alexa, and more applications.


On the Opportunities and Risks of Foundation Models

arXiv.org Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.


Natural Language Processing: NLP In Python with Projects

#artificialintelligence

We have covered each and every topic in detail and also learned to apply them to real-world problems. There are lots and lots of exercises for you to practice and also 2 bonus NLP Projects "Sentiment analyzer" and "Drugs Prescription using Reviews". In this Sentiment analyzer project, you will learn how to Extract and Scrap Data from Social Media Websites and Extract out Beneficial Information from these Data for Driving Huge Business Insights. In this Drugs Prescription using Reviews project, you will learn how to Deal with Data having Textual Features, you will also learn NLP Techniques to transform and Process the Data to find out Important Insights. You will make use of all the topics read in this course. You will also have access to all the resources used in this course. Enroll now and become a master in machine learning.