Goto

Collaborating Authors

Results


Deep Learning Prerequisites: Logistic Regression in Python

#artificialintelligence

This course is a lead-in to deep learning and neural networks - it covers a popular and fundamental technique used in machine learning, data science and statistics: logistic regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own logistic regression module in Python. This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for free.


Deep Learning Prerequisites: Logistic Regression in Python

#artificialintelligence

Deep Learning Prerequisites: Logistic Regression in Python, Data science, machine learning, and artificial intelligence in Python for students and professionals Created by Lazy Programmer Inc. English [Auto], Portuguese [Auto]Preview this Course - GET COUPON CODE This course is a lead-in to deep learning and neural networks - it covers a popular and fundamental technique used in machine learning, data science and statistics: logistic regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own logistic regression module in Python. This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for free.


Deep Learning Prerequisites: Logistic Regression in Python

#artificialintelligence

Online Courses Udemy - Data science techniques for professionals and students - learn the theory behind logistic regression and code in Python BESTSELLER Created by Lazy Programmer Inc English [Auto-generated], Portuguese [Auto-generated], 1 more Students also bought Data Science: Deep Learning in Python Natural Language Processing with Deep Learning in Python Advanced AI: Deep Reinforcement Learning in Python Deep Learning: Advanced NLP and RNNs Deep Learning A-Z: Hands-On Artificial Neural Networks Preview this course GET COUPON CODE Description This course is a lead-in to deep learning and neural networks - it covers a popular and fundamental technique used in machine learning, data science and statistics: logistic regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own logistic regression module in Python. This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for free.


Deep Learning Prerequisites: Logistic Regression in Python

#artificialintelligence

Created by Lazy Programmer Inc. English [Auto-generated], Portuguese [Auto-generated], 1 more Created by Lazy Programmer Inc. This course is a lead-in to deep learning and neural networks - it covers a popular and fundamental technique used in machine learning, data science and statistics: logistic regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own logistic regression module in Python. This course does not require any external materials.


NeuCrowd: Neural Sampling Network for Representation Learning with Crowdsourced Labels

arXiv.org Artificial Intelligence

Representation learning approaches require a massive amount of discriminative training data, which is unavailable in many scenarios, such as healthcare, small city, education, etc. In practice, people refer to crowdsourcing to get annotated labels. However, due to issues like data privacy, budget limitation, shortage of domain-specific annotators, the number of crowdsourced labels are still very limited. Moreover, because of annotators' diverse expertises, crowdsourced labels are often inconsistent. Thus, directly applying existing representation learning algorithms may easily get the overfitting problem and yield suboptimal solutions. In this paper, we propose \emph{NeuCrowd}, a unified framework for representation learning from crowdsourced labels. The proposed framework (1) creates a sufficient number of high-quality \emph{n}-tuplet training samples by utilizing safety-aware sampling and robust anchor generation; and (2) automatically learns a neural sampling network that adaptively learns to select effective samples for representation learning network. The proposed framework is evaluated on both synthetic and real-world data sets. The results show that our approach outperforms a wide range of state-of-the-art baselines in terms of prediction accuracy and AUC\footnote{To encourage the reproducible results, we make our code public on a github repository, i.e., \url{https://github.com/crowd-data-mining/NeuCrowd}}.


Polynomial Regression As an Alternative to Neural Nets

arXiv.org Machine Learning

Despite the success of neural networks (NNs), there is still a concern among many over their "black box" nature. Why do they work? Here we present a simple analytic argument that NNs are in fact essentially polynomial regression models. This view will have various implications for NNs, e.g. providing an explanation for why convergence problems arise in NNs, and it gives rough guidance on avoiding overfitting. In addition, we use this phenomenon to predict and confirm a multicollinearity property of NNs not previously reported in the literature. Most importantly, given this loose correspondence, one may choose to routinely use polynomial models instead of NNs, thus avoiding some major problems of the latter, such as having to set many tuning parameters and dealing with convergence issues. We present a number of empirical results; in each case, the accuracy of the polynomial approach matches or exceeds that of NN approaches. A many-featured, open-source software package, polyreg, is available.


Deep Learning Prerequisites: Logistic Regression in Python

@machinelearnbot

This course is a lead-in to deep learning and neural networks - it covers a popular and fundamental technique used in machine learning, data science and statistics: logistic regression. We cover the theory from the ground up: derivation of the solution, and applications to real-world problems. We show you how one might code their own logistic regression module in Python. This course does not require any external materials. Everything needed (Python, and some Python libraries) can be obtained for free.