Data science or data-driven science is one of today's fastest-growing fields. Are you looking for top Online courses on Data Science? Do you want to become a Data Scientist in 2017? Are you planning to buy a course for someone else to whom you do care? If your answer is yes, then you are in the right place.
The E-learning course starts by refreshing the basic concepts of the analytics process model: data preprocessing, analytics and post processing. We then discuss decision trees and ensemble methods (bagging, boosting, random forests), neural networks, support vector machines (SVMs), Bayesian networks, survival analysis, social networks, monitoring and backtesting analytical models. Throughout the course, we extensively refer to our industry and research experience. The E-learning course consists of more than 20 hours of movies, each 5 minutes on average. Quizzes are included to facilitate the understanding of the material.
Prerequisites: Working knowledge of Python is necessary if you want to run the source code that is provided. Basic knowledge of machine learning, especially ML classification techniques, would be helpful but it's not mandatory. Taught by a Stanford-educated, ex-Googler and an IIT, IIM - educated ex-Flipkart lead analyst. This team has decades of practical experience in quant trading, analytics and e-commerce. Completely Practical: This course has just enough theory to get you started with both Quant Trading and Machine Learning.
The following is a list of, mostly free, machine learning online courses for beginners. First, and arguably the most popular course on this list, Machine Learning provides a broad introduction to machine learning, data mining, and statistical pattern recognition. The course will also draw from numerous case studies and applications, so that you'll also learn how to apply learning algorithms to building smart robots (perception, control), text understanding (web search, anti-spam), computer vision, medical informatics, audio, database mining, and other areas. The course is 11 weeks long and averages a 4.9/5 user rating, currently. It is free to take, but you can pay $79 for a certificate upon course completion.
Getting into machine learning (ml) can seem like an unachievable task from the outside. However, after dedicating one week to learning the basics of the subject, I found it to be much more accessible than I anticipated. This article is intended to give others who're interested in getting into ml a roadmap of how to get started, drawing from the experiences I made in my intro week. Before my machine learning week, I had been reading about the subject for a while, and had gone through half of Andrew Ng's course on Coursera and a few other theoretical courses. So I had a tiny bit of conceptual understanding of ml, though I was completely unable to transfer any of my knowledge into code.
I've just finished Week 5 of the Coursera/Stanford Machine Learning course. It has been a mixture of refreshing, relearning, and new for me. I had already been using, building, and researching/evaluating machine learning algorithms for a number of years. I therefore felt like I'knew' a lot of the concepts, particularly the introductory ones. I put'knew' in quotes, however, since I've always had a feeling that I don't know them well enough, no matter how many times I've used them.
Lan, Andrew S., Studer, Christoph, Baraniuk, Richard G.
We propose SPARFA-Trace, a new machine learning-based framework for time-varying learning and content analytics for education applications. We develop a novel message passing-based, blind, approximate Kalman filter for sparse factor analysis (SPARFA), that jointly (i) traces learner concept knowledge over time, (ii) analyzes learner concept knowledge state transitions (induced by interacting with learning resources, such as textbook sections, lecture videos, etc, or the forgetting effect), and (iii) estimates the content organization and intrinsic difficulty of the assessment questions. These quantities are estimated solely from binary-valued (correct/incorrect) graded learner response data and a summary of the specific actions each learner performs (e.g., answering a question or studying a learning resource) at each time instance. Experimental results on two online course datasets demonstrate that SPARFA-Trace is capable of tracing each learner's concept knowledge evolution over time, as well as analyzing the quality and content organization of learning resources, the question-concept associations, and the question intrinsic difficulties. Moreover, we show that SPARFA-Trace achieves comparable or better performance in predicting unobserved learner responses than existing collaborative filtering and knowledge tracing approaches for personalized education.