The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.

15 Best Udacity Machine Learning Courses


This is an intermediate-level free artificial intelligence course. This course will teach the basics of modern AI as well as some of the representative applications of AI including machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing. To understand this course, you should have some previous understanding of probability theory and linear algebra.

Personalized Education in the AI Era: What to Expect Next? Artificial Intelligence

The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to ultimately meet her desired goal. This concept emerged several years ago and is being adopted by a rapidly-growing number of educational institutions around the globe. In recent years, the boost of artificial intelligence (AI) and machine learning (ML), together with the advances in big data analysis, has unfolded novel perspectives to enhance personalized education in numerous dimensions. By taking advantage of AI/ML methods, the educational platform precisely acquires the student's characteristics. This is done, in part, by observing the past experiences as well as analyzing the available big data through exploring the learners' features and similarities. It can, for example, recommend the most appropriate content among numerous accessible ones, advise a well-designed long-term curriculum, connect appropriate learners by suggestion, accurate performance evaluation, and the like. Still, several aspects of AI-based personalized education remain unexplored. These include, among others, compensating for the adverse effects of the absence of peers, creating and maintaining motivations for learning, increasing diversity, removing the biases induced by the data and algorithms, and the like. In this paper, while providing a brief review of state-of-the-art research, we investigate the challenges of AI/ML-based personalized education and discuss potential solutions.

Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.