Goto

Collaborating Authors

Results


Latent gaze information in highly dynamic decision-tasks

arXiv.org Artificial Intelligence

Digitization is penetrating more and more areas of life. Tasks are increasingly being completed digitally, and are therefore not only fulfilled faster, more efficiently but also more purposefully and successfully. The rapid developments in the field of artificial intelligence in recent years have played a major role in this, as they brought up many helpful approaches to build on. At the same time, the eyes, their movements, and the meaning of these movements are being progressively researched. The combination of these developments has led to exciting approaches. In this dissertation, I present some of these approaches which I worked on during my Ph.D. First, I provide insight into the development of models that use artificial intelligence to connect eye movements with visual expertise. This is demonstrated for two domains or rather groups of people: athletes in decision-making actions and surgeons in arthroscopic procedures. The resulting models can be considered as digital diagnostic models for automatic expertise recognition. Furthermore, I show approaches that investigate the transferability of eye movement patterns to different expertise domains and subsequently, important aspects of techniques for generalization. Finally, I address the temporal detection of confusion based on eye movement data. The results suggest the use of the resulting model as a clock signal for possible digital assistance options in the training of young professionals. An interesting aspect of my research is that I was able to draw on very valuable data from DFB youth elite athletes as well as on long-standing experts in arthroscopy. In particular, the work with the DFB data attracted the interest of radio and print media, namely DeutschlandFunk Nova and SWR DasDing. All resulting articles presented here have been published in internationally renowned journals or at conferences.


Artificial Intelligence Projects with Python

#artificialintelligence

In this course, we aim to specialize in artificial intelligence by working on 14 Machine Learning Projects and Deep Learning Projects at various levels (easy - medium - hard). Before starting the course, you should have basic Python knowledge. Our aim in this course is to turn real-life problems that seem difficult to do into projects and then solve them using latest versions of artificial intelligence algorithms (machine learning algortihms and deep learning algorithms) and Python(3.8). This course was prepared in August 2021. We will carry out some of our projects using machine learning and some using deep learning algorithms.


Knowledge Tracing: A Survey

arXiv.org Artificial Intelligence

Humans ability to transfer knowledge through teaching is one of the essential aspects for human intelligence. A human teacher can track the knowledge of students to customize the teaching on students needs. With the rise of online education platforms, there is a similar need for machines to track the knowledge of students and tailor their learning experience. This is known as the Knowledge Tracing (KT) problem in the literature. Effectively solving the KT problem would unlock the potential of computer-aided education applications such as intelligent tutoring systems, curriculum learning, and learning materials' recommendation. Moreover, from a more general viewpoint, a student may represent any kind of intelligent agents including both human and artificial agents. Thus, the potential of KT can be extended to any machine teaching application scenarios which seek for customizing the learning experience for a student agent (i.e., a machine learning model). In this paper, we provide a comprehensive and systematic review for the KT literature. We cover a broad range of methods starting from the early attempts to the recent state-of-the-art methods using deep learning, while highlighting the theoretical aspects of models and the characteristics of benchmark datasets. Besides these, we shed light on key modelling differences between closely related methods and summarize them in an easy-to-understand format. Finally, we discuss current research gaps in the KT literature and possible future research and application directions.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Artificial Intelligence Projects with Python

#artificialintelligence

In this course, we aim to specialize in artificial intelligence by working on 14 Machine Learning Projects and Deep Learning Projects at various levels (easy - medium - hard). Before starting the course, you should have basic Python knowledge. Our aim in this course is to turn real-life problems that seem difficult to do into projects and then solve them using latest versions of artificial intelligence algorithms (machine learning algortihms and deep learning algorithms) and Python(3.8). This course was prepared in August 2021. We will carry out some of our projects using machine learning and some using deep learning algorithms.


Artificial Intelligence Projects with Python

#artificialintelligence

The AI industry has expanded massively over the last years and is expected to grow even further. Many of the major corporations employ AI-assisted technicians to solve problems. The median salary of an AI engineer is $150,000 which is up to $171,765 per year. Companies need AI experts who can build and deploy scalable models to meet growing industry demands. There are various AI projects you can do to learn about the library.


Finetuning Transformer Models to Build ASAG System

arXiv.org Artificial Intelligence

Research towards creating systems for automatic grading of student answers to quiz and exam questions in educational settings has been ongoing since 1966. Over the years, the problem was divided into many categories. Among them, grading text answers were divided into short answer grading, and essay grading. The goal of this work was to develop an ML-based short answer grading system. I hence built a system which uses finetuning on Roberta Large Model pretrained on STS benchmark dataset and have also created an interface to show the production readiness of the system. I evaluated the performance of the system on the Mohler extended dataset and SciEntsBank Dataset. The developed system achieved a Pearsons Correlation of 0.82 and RMSE of 0.7 on the Mohler Dataset which beats the SOTA performance on this dataset which is correlation of 0.805 and RMSE of 0.793. Additionally, Pearsons Correlation of 0.79 and RMSE of 0.56 was achieved on the SciEntsBank Dataset, which only reconfirms the robustness of the system. A few observations during achieving these results included usage of batch size of 1 produced better results than using batch size of 16 or 32 and using huber loss as loss function performed well on this regression task. The system was tried and tested on train and validation splits using various random seeds and still has been tweaked to achieve a minimum of 0.76 of correlation and a maximum 0.15 (out of 1) RMSE on any dataset.


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.


Jointly Modeling Heterogeneous Student Behaviors and Interactions Among Multiple Prediction Tasks

arXiv.org Artificial Intelligence

Prediction tasks about students have practical significance for both student and college. Making multiple predictions about students is an important part of a smart campus. For instance, predicting whether a student will fail to graduate can alert the student affairs office to take predictive measures to help the student improve his/her academic performance. With the development of information technology in colleges, we can collect digital footprints which encode heterogeneous behaviors continuously. In this paper, we focus on modeling heterogeneous behaviors and making multiple predictions together, since some prediction tasks are related and learning the model for a specific task may have the data sparsity problem. To this end, we propose a variant of LSTM and a soft-attention mechanism. The proposed LSTM is able to learn the student profile-aware representation from heterogeneous behavior sequences. The proposed soft-attention mechanism can dynamically learn different importance degrees of different days for every student. In this way, heterogeneous behaviors can be well modeled. In order to model interactions among multiple prediction tasks, we propose a co-attention mechanism based unit. With the help of the stacked units, we can explicitly control the knowledge transfer among multiple tasks. We design three motivating behavior prediction tasks based on a real-world dataset collected from a college. Qualitative and quantitative experiments on the three prediction tasks have demonstrated the effectiveness of our model.


Personalized Education in the AI Era: What to Expect Next?

arXiv.org Artificial Intelligence

The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to ultimately meet her desired goal. This concept emerged several years ago and is being adopted by a rapidly-growing number of educational institutions around the globe. In recent years, the boost of artificial intelligence (AI) and machine learning (ML), together with the advances in big data analysis, has unfolded novel perspectives to enhance personalized education in numerous dimensions. By taking advantage of AI/ML methods, the educational platform precisely acquires the student's characteristics. This is done, in part, by observing the past experiences as well as analyzing the available big data through exploring the learners' features and similarities. It can, for example, recommend the most appropriate content among numerous accessible ones, advise a well-designed long-term curriculum, connect appropriate learners by suggestion, accurate performance evaluation, and the like. Still, several aspects of AI-based personalized education remain unexplored. These include, among others, compensating for the adverse effects of the absence of peers, creating and maintaining motivations for learning, increasing diversity, removing the biases induced by the data and algorithms, and the like. In this paper, while providing a brief review of state-of-the-art research, we investigate the challenges of AI/ML-based personalized education and discuss potential solutions.