Plotting

Results


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


Programming Knowledge Tracing: A Comprehensive Dataset and A New Model

arXiv.org Artificial Intelligence

In this paper, we study knowledge tracing in the domain of programming education and make two important contributions. First, we harvest and publish so far the most comprehensive dataset, namely BePKT, which covers various online behaviors in an OJ system, including programming text problems, knowledge annotations, user-submitted code and system-logged events. Second, we propose a new model PDKT to exploit the enriched context for accurate student behavior prediction. More specifically, we construct a bipartite graph for programming problem embedding, and design an improved pre-training model PLCodeBERT for code embedding, as well as a double-sequence RNN model with exponential decay attention for effective feature fusion. Experimental results on the new dataset BePKT show that our proposed model establishes state-of-the-art performance in programming knowledge tracing. In addition, we verify that our code embedding strategy based on PLCodeBERT is complementary to existing knowledge tracing models to further enhance their accuracy. As a side product, PLCodeBERT also results in better performance in other programming-related tasks such as code clone detection.


15 Best Udacity Machine Learning Courses

#artificialintelligence

This is an intermediate-level free artificial intelligence course. This course will teach the basics of modern AI as well as some of the representative applications of AI including machine learning, probabilistic reasoning, robotics, computer vision, and natural language processing. To understand this course, you should have some previous understanding of probability theory and linear algebra.


Empowering Things with Intelligence: A Survey of the Progress, Challenges, and Opportunities in Artificial Intelligence of Things

arXiv.org Artificial Intelligence

In the Internet of Things (IoT) era, billions of sensors and devices collect and process data from the environment, transmit them to cloud centers, and receive feedback via the internet for connectivity and perception. However, transmitting massive amounts of heterogeneous data, perceiving complex environments from these data, and then making smart decisions in a timely manner are difficult. Artificial intelligence (AI), especially deep learning, is now a proven success in various areas including computer vision, speech recognition, and natural language processing. AI introduced into the IoT heralds the era of artificial intelligence of things (AIoT). This paper presents a comprehensive survey on AIoT to show how AI can empower the IoT to make it faster, smarter, greener, and safer. Specifically, we briefly present the AIoT architecture in the context of cloud computing, fog computing, and edge computing. Then, we present progress in AI research for IoT from four perspectives: perceiving, learning, reasoning, and behaving. Next, we summarize some promising applications of AIoT that are likely to profoundly reshape our world. Finally, we highlight the challenges facing AIoT and some potential research opportunities.


Complete Machine Learning with R Studio - ML for 2020

#artificialintelligence

Online Courses Udemy - Complete Machine Learning with R Studio - ML for 2020, Linear & Logistic Regression, Decision Trees, XGBoost, SVM & other ML models in R programming language - R studio 4.1 (41 ratings), Created by Start-Tech Academy, English [Auto-generated] Preview this Udemy course -. GET COUPON CODE Description In this course we will learn and practice all the services of AWS Machine Learning which is being offered by AWS Cloud. There will be both theoretical and practical section of each AWS Machine Learning services.This course is for those who loves machine learning and would build application based on cognitive computing, AI and ML. You could integrate these services in your Web, Android, IoT, Desktop Applications like Face Detection, ChatBot, Voice Detection, Text to custom Speech (with pitch, emotions, etc), Speech to text, Sentimental Analysis on Social media or any textual data. Machine Learning Services like- Amazon Sagemaker to build, train, and deploy machine learning models at scale Amazon Comprehend for natural Language processing and text analytics Amazon Lex for conversational interfaces for your applications powered by the same deep learning technologies as Alexa Amazon Polly to turn text into lifelike speech using deep learning Object and scene detection,Image moderation,Facial analysis,Celebrity recognition,Face comparison,Text in image and many more Amazon Transcribe for automatic speech recognition Amazon Translate for natural and accurate language translation As Machine learning and cloud computing are trending topic and also have lot of job opportunities If you have interest in machine learning as well as cloud computing then this course for you.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


QuesNet: A Unified Representation for Heterogeneous Test Questions

arXiv.org Machine Learning

Understanding learning materials (e.g. test questions) is a crucial issue in online learning systems, which can promote many applications in education domain. Unfortunately, many supervised approaches suffer from the problem of scarce human labeled data, whereas abundant unlabeled resources are highly underutilized. To alleviate this problem, an effective solution is to use pre-trained representations for question understanding. However, existing pre-training methods in NLP area are infeasible to learn test question representations due to several domain-specific characteristics in education. First, questions usually comprise of heterogeneous data including content text, images and side information. Second, there exists both basic linguistic information as well as domain logic and knowledge. To this end, in this paper, we propose a novel pre-training method, namely QuesNet, for comprehensively learning question representations. Specifically, we first design a unified framework to aggregate question information with its heterogeneous inputs into a comprehensive vector. Then we propose a two-level hierarchical pre-training algorithm to learn better understanding of test questions in an unsupervised way. Here, a novel holed language model objective is developed to extract low-level linguistic features, and a domain-oriented objective is proposed to learn high-level logic and knowledge. Moreover, we show that QuesNet has good capability of being fine-tuned in many question-based tasks. We conduct extensive experiments on large-scale real-world question data, where the experimental results clearly demonstrate the effectiveness of QuesNet for question understanding as well as its superior applicability.


What Should I Learn First: Introducing LectureBank for NLP Education and Prerequisite Chain Learning

arXiv.org Machine Learning

Recent years have witnessed the rising popularity of Natural Language Processing (NLP) and related fields such as Artificial Intelligence (AI) and Machine Learning (ML). Many online courses and resources are available even for those without a strong background in the field. Often the student is curious about a specific topic but does not quite know where to begin studying. To answer the question of "what should one learn first," we apply an embedding-based method to learn prerequisite relations for course concepts in the domain of NLP. We introduce LectureBank, a dataset containing 1,352 English lecture files collected from university courses which are each classified according to an existing taxonomy as well as 208 manually-labeled prerequisite relation topics, which is publicly available. The dataset will be useful for educational purposes such as lecture preparation and organization as well as applications such as reading list generation. Additionally, we experiment with neural graph-based networks and non-neural classifiers to learn these prerequisite relations from our dataset.