Collaborating Authors


Gartner: 75% of VCs will use AI to make investment decisions by 2025


By 2025, more than 75% of venture capital and early-stage investor executive reviews will be informed using AI and data analytics. In other words, AI might determine whether a company makes it to a human evaluation at all, deemphasizing the importance of pitch decks and financials. That's according to a new whitepaper by Gartner, which predicts that in the next four years, the AI- and data-science-equipped investor will become commonplace. Increased advanced analytics capabilities are shifting the early-stage venture investing strategy away from "gut feel" and qualitative decision-making to a "platform-based" quantitative process, according to Patrick Stakenas, senior research director at Gartner. Stakenas says data gathered from sources like LinkedIn, PitchBook, Crunchbase, and Owler, along with third-party data marketplaces, will be leveraged alongside diverse past and current investments.

The AI Index 2021 Annual Report Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.

Blockchain-Based Federated Learning in Mobile Edge Networks with Application in Internet of Vehicles Artificial Intelligence

The rapid increase of the data scale in Internet of Vehicles (IoV) system paradigm, hews out new possibilities in boosting the service quality for the emerging applications through data sharing. Nevertheless, privacy concerns are major bottlenecks for data providers to share private data in traditional IoV networks. To this end, federated learning (FL) as an emerging learning paradigm, where data providers only send local model updates trained on their local raw data rather than upload any raw data, has been recently proposed to build a privacy-preserving data sharing models. Unfortunately, by analyzing on the differences of uploaded local model updates from data providers, private information can still be divulged, and performance of the system cannot be guaranteed when partial federated nodes executes malicious behavior. Additionally, traditional cloud-based FL poses challenges to the communication overhead with the rapid increase of terminal equipment in IoV system. All these issues inspire us to propose an autonomous blockchain empowered privacy-preserving FL framework in this paper, where the mobile edge computing (MEC) technology was naturally integrated in IoV system.

Digital transformation is difficult. Which technologies to bet on?


The general view is that the 2020-21 pandemic has been already accelerating the adoption of automation, and moves towards digital business. There is strong evidence for this, and for the trend to continue across the 2021–2025 period. And indeed the case for these technologies has been well made by our 2020 experiences. It provided alternative ways of working in a crisis. It allowed a high degree of virtuality, and all the upsides to that, in a world rendered physically semi-paralysed, albeit temporarily.

Spectral clustering via adaptive layer aggregation for multi-layer networks Machine Learning

One of the fundamental problems in network analysis is detecting community structure in multi-layer networks, of which each layer represents one type of edge information among the nodes. We propose integrative spectral clustering approaches based on effective convex layer aggregations. Our aggregation methods are strongly motivated by a delicate asymptotic analysis of the spectral embedding of weighted adjacency matrices and the downstream $k$-means clustering, in a challenging regime where community detection consistency is impossible. In fact, the methods are shown to estimate the optimal convex aggregation, which minimizes the mis-clustering error under some specialized multi-layer network models. Our analysis further suggests that clustering using Gaussian mixture models is generally superior to the commonly used $k$-means in spectral clustering. Extensive numerical studies demonstrate that our adaptive aggregation techniques, together with Gaussian mixture model clustering, make the new spectral clustering remarkably competitive compared to several popularly used methods.

A Survey on Data Pricing: from Economics to Data Science Artificial Intelligence

How can we assess the value of data objectively, systematically and quantitatively? Pricing data, or information goods in general, has been studied and practiced in dispersed areas and principles, such as economics, marketing, electronic commerce, data management, data mining and machine learning. In this article, we present a unified, interdisciplinary and comprehensive overview of this important direction. We examine various motivations behind data pricing, understand the economics of data pricing and review the development and evolution of pricing models according to a series of fundamental principles. We discuss both digital products and data products. We also consider a series of challenges and directions for future work.

8 Future Trends in Data Analytics


AutoML enjoys a steadily increasing popularity (see Forbes). Not least driven by the numerous successes in practical analyses. In a world in which more and more devices produce data and are networked with each other, the data "produced" grows disproportionately. Therefore AutoML is of urgent necessity to gain knowledge from these rapidly increasing data on time. We assume that AutoML becomes even more critical in the coming years and that the analysis methods deliver even more precise and faster results. The field of activity of the data scientist will not disappear, but rather, his focus will shift to more specific or sophisticated analysis techniques.

Top Things You Should Know About Numerai (NMR)


Numerai is a machine learning stock market prediction platform seeking to build the world's largest hedge fund. The project continuously runs "the hardest data science tournament on the planet" with the goal of crowdsourcing an excellent financial model for predicting the stock market, among other things. Now, before we dive in, the following piece is similar to my latest articles on Hegic (HEGIC), Ocean Protocol (OCEAN), and Quantstamp (QSP), so if you haven't already seen those, be sure to check them out as well. Numerai is a unique project that's tackling a complicated data science problem by crowdsourcing data scientists who are provided with clean and regularized stock market data that has been encrypted and obfuscated so it can be given out for free. Users (data scientists) who sign up with Numerai can download their cleaned data to create models that predict stock market movements.

30 Best Edureka Free Courses, Tutorial & Certification 2020


Are you looking for the Best Edureka Courses 2020? Edureka is an online technical training platform that offers Big Data, cloud computing, artificial intelligence, and blockchain-based courses. The classes can be attended to at any place and any time as per your choice Use our Android and iOS App to learn on the go. Their engaging learning platform, expert industry practitioners, and support ninjas make sure that you complete the course. Get lifetime accesses to the entire content including quizzes and assignments as the technology upgrades your content gets updated at no cost? Choose from a number of batches as per your convenience if you got something urgent to do, reschedule your batch for a later time. If you want to get started with top Edureka free courses check out the Edureka course catalog from the Edureka site. You will get tons of free courses online Edureka on the Edureka platform.

Fed+: A Family of Fusion Algorithms for Federated Learning Machine Learning

We present a class of methods for federated learning, which we call Fed+, pronounced FedPlus. The class of methods encompasses and unifies a number of recent algorithms proposed for federated learning and permits easily defining many new algorithms. The principal advantage of this class of methods is to better accommodate the real-world characteristics found in federated learning training, such as the lack of IID data across the parties in the federation. We demonstrate the use and benefits of this class of algorithms on standard benchmark datasets and a challenging real-world problem where catastrophic failure has a serious impact, namely in financial portfolio management.