Goto

Collaborating Authors

Results


Financial Engineering and Artificial Intelligence in Python

#artificialintelligence

Created by Lazy Programmer Team, Lazy Programmer Inc.Preview this Course - GET COUPON CODE Have you ever thought about what would happen if you combined the power of machine learning and artificial intelligence with financial engineering? Today, you can stop imagining, and start doing. This course will teach you the core fundamentals of financial engineering, with a machine learning twist. We will cover must-know topics in financial engineering, such as: Exploratory data analysis, significance testing, correlations, alpha and beta Time series analysis, simple moving average, exponentially-weighted moving average Holt-Winters exponential smoothing model Efficient Market Hypothesis Random Walk Hypothesis Time series forecasting ("stock price prediction") Modern portfolio theory Efficient frontier / Markowitz bullet Mean-variance optimization Maximizing the Sharpe ratio Convex optimization with Linear Programming and Quadratic Programming Capital Asset Pricing Model (CAPM) Algorithmic trading (VIP only) Statistical Factor Models (VIP only) Regime Detection with Hidden Markov Models (VIP only) In addition, we will look at various non-traditional techniques which stem purely from the field of machine learning and artificial intelligence, such as: Classification models Unsupervised learning Reinforcement learning and Q-learning ***VIP-only sections (get it while it lasts!) You will learn exactly why their methodology is fundamentally flawed and why their results are complete nonsense.


Financial Engineering and Artificial Intelligence in Python

#artificialintelligence

Preview this course - GET COUPON CODE Have you ever thought about what would happen if you combined the power of machine learning and artificial intelligence with financial engineering? Today, you can stop imagining, and start doing. This course will teach you the core fundamentals of financial engineering, with a machine learning twist. We will cover must-know topics in financial engineering, such as: Exploratory data analysis, significance testing, correlations, alpha and beta Time series analysis, simple moving average, exponentially-weighted moving average Holt-Winters exponential smoothing model Efficient Market Hypothesis Random Walk Hypothesis Time series forecasting ("stock price prediction") Modern portfolio theory Efficient frontier / Markowitz bullet Mean-variance optimization Maximizing the Sharpe ratio Convex optimization with Linear Programming and Quadratic Programming Capital Asset Pricing Model (CAPM) Algorithmic trading (VIP only) Statistical Factor Models (VIP only) Regime Detection with Hidden Markov Models (VIP only) In addition, we will look at various non-traditional techniques which stem purely from the field of machine learning and artificial intelligence, such as: Classification models Unsupervised learning Reinforcement learning and Q-learning ***VIP-only sections (get it while it lasts!) You will learn exactly why their methodology is fundamentally flawed and why their results are complete nonsense.


Tackling Climate Change with Machine Learning

arXiv.org Artificial Intelligence

Climate change is one of the greatest challenges facing humanity, and we, as machine learning experts, may wonder how we can help. Here we describe how machine learning can be a powerful tool in reducing greenhouse gas emissions and helping society adapt to a changing climate. From smart grids to disaster management, we identify high impact problems where existing gaps can be filled by machine learning, in collaboration with other fields. Our recommendations encompass exciting research questions as well as promising business opportunities. We call on the machine learning community to join the global effort against climate change.