Collaborating Authors


Subgroup Fairness in Two-Sided Markets Artificial Intelligence

It is well known that two-sided markets are unfair in a number of ways. For instance, female workers at Uber earn less than their male colleagues per mile driven. Similar observations have been made for other minority subgroups in other two-sided markets. Here, we suggest a novel market-clearing mechanism for two-sided markets, which promotes equalisation of the pay per hour worked across multiple subgroups, as well as within each subgroup. In the process, we introduce a novel notion of subgroup fairness (which we call Inter-fairness), which can be combined with other notions of fairness within each subgroup (called Intra-fairness), and the utility for the customers (Customer-Care) in the objective of the market-clearing problem. While the novel non-linear terms in the objective complicate market clearing by making the problem non-convex, we show that a certain non-convex augmented Lagrangian relaxation can be approximated to any precision in time polynomial in the number of market participants using semi-definite programming. This makes it possible to implement the market-clearing mechanism efficiently. On the example of driver-ride assignment in an Uber-like system, we demonstrate the efficacy and scalability of the approach, and trade-offs between Inter- and Intra-fairness.

Amazon extends police ban on facial recognition technology – but does not say why or how long for

The Independent - Tech

Amazon will extend its ban on police use of its face-recognition technology beyond the one-year pause it announced last year. "We've advocated that governments should put in place stronger regulations to govern the ethical use of facial recognition technology, and in recent days, Congress appears ready to take on this challenge," the company said at the time. Facial recognition software has often been criticised for its bias against people with darker skin, which could lead to law enforcement investigating innocent citizens - and, in the United States, has been one of the factors in wrongful arrests. A National Institute of Standards and Technology study tested 189 algorithms from 99 developers and found that black and Asian faces were ten to 100 times more likely to be falsely identified by the algorithms compared to white faces. As such, Amazon and other technology companies are under pressure from civil rights activists and their own workers to halt the sale of face-recognition systems to law enforcement agencies.

Robotics Firm UiPath Files for IPO After $35B Valuation


UiPath, a New York robotics automation company, on Friday said it had filed with the Securities and Exchange Commission for an initial public offering. The move comes not long after UiPath raised fresh capital from investors at a valuation of $35 billion, making the company one of the most valuable privately held tech businesses in the U.S., CNBC reported. The company, which plans to list on the New York Stock Exchange under the ticker symbol PATH, aims to raise $1 billion in the IPO, the SEC Form S-1 says. It has not detailed the number of shares it plans to offer or the estimated price range. In the fiscal year ended Jan.

The AI Index 2021 Annual Report Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.

Covariance Prediction via Convex Optimization Artificial Intelligence

We consider the problem of predicting the covariance of a zero mean Gaussian vector, based on another feature vector. We describe a covariance predictor that has the form of a generalized linear model, i.e., an affine function of the features followed by an inverse link function that maps vectors to symmetric positive definite matrices. The log-likelihood is a concave function of the predictor parameters, so fitting the predictor involves convex optimization. Such predictors can be combined with others, or recursively applied to improve performance.

The AI Liability Puzzle and A Fund-Based Work-Around

Journal of Artificial Intelligence Research

Confidence in the regulatory environment is crucial to enable responsible AI innovation and foster the social acceptance of these powerful new technologies. One notable source of uncertainty is, however, that the existing legal liability system is unable to assign responsibility where a potentially harmful conduct and/or the harm itself are unforeseeable, yet some instantiations of AI and/or the harms they may trigger are not foreseeable in the legal sense. The unpredictability of how courts would handle such cases makes the risks involved in the investment and use of AI difficult to calculate with confidence, creating an environment that is not conducive to innovation and may deprive society of some benefits AI could provide. To tackle this problem, we propose to draw insights from financial regulatory best practices and establish a system of AI guarantee schemes. We envisage the system to form part of the broader market-structuring regulatory frameworks, with the primary function to provide a readily available, clear, and transparent funding mechanism to compensate claims that are either extremely hard or impossible to realize via conventional litigation. We propose it to be at least partially industry-funded. Funding arrangements should depend on whether it would pursue other potential policy goals aimed more broadly at controlling the trajectory of AI innovation to increase economic and social welfare worldwide. Because of the global relevance of the issue, rather than focusing on any particular legal system, we trace relevant developments across multiple jurisdictions and engage in a high-level, comparative conceptual debate around the suitability of the foreseeability concept to limit legal liability. The paper also refrains from confronting the intricacies of the case law of specific jurisdictions for now and—recognizing the importance of this task—leaves this to further research in support of the legal system’s incremental adaptation to the novel challenges of present and future AI technologies. This article appears in the special track on AI and Society.

Over a Decade of Social Opinion Mining Artificial Intelligence

Social media popularity and importance is on the increase, due to people using it for various types of social interaction across multiple channels. This social interaction by online users includes submission of feedback, opinions and recommendations about various individuals, entities, topics, and events. This systematic review focuses on the evolving research area of Social Opinion Mining, tasked with the identification of multiple opinion dimensions, such as subjectivity, sentiment polarity, emotion, affect, sarcasm and irony, from user-generated content represented across multiple social media platforms and in various media formats, like text, image, video and audio. Therefore, through Social Opinion Mining, natural language can be understood in terms of the different opinion dimensions, as expressed by humans. This contributes towards the evolution of Artificial Intelligence, which in turn helps the advancement of several real-world use cases, such as customer service and decision making. A thorough systematic review was carried out on Social Opinion Mining research which totals 485 studies and spans a period of twelve years between 2007 and 2018. The in-depth analysis focuses on the social media platforms, techniques, social datasets, language, modality, tools and technologies, natural language processing tasks and other aspects derived from the published studies. Such multi-source information fusion plays a fundamental role in mining of people's social opinions from social media platforms. These can be utilised in many application areas, ranging from marketing, advertising and sales for product/service management, and in multiple domains and industries, such as politics, technology, finance, healthcare, sports and government. Future research directions are presented, whereas further research and development has the potential of leaving a wider academic and societal impact.

Domain-specific Knowledge Graphs: A survey Artificial Intelligence

Knowledge Graphs (KGs) have made a qualitative leap and effected a real revolution in knowledge representation. This is leveraged by the underlying structure of the KG which underpins a better comprehension, reasoning and interpreting of knowledge for both human and machine. Therefore, KGs continue to be used as a main driver to tackle a plethora of real-life problems in dissimilar domains. However, there is no consensus on a plausible and inclusive definition to domain KG. Further, in conjunction with several limitations and deficiencies, various domain KG construction approaches are far from perfection. This survey is the first to provide an inclusive definition to the notion of domain KG. Also, a comprehensive review of the state-of-the-art approaches drawn from academic works relevant to seven dissimilar domains of knowledge is provided. The scrutiny of the current approaches reveals a correlated array of limitations and deficiencies. The set of improvements to address the limitations of the current approaches are introduced followed by recommendations and opportunities for future research directions.

Does Palantir See Too Much?


On a bright Tuesday afternoon in Paris last fall, Alex Karp was doing tai chi in the Luxembourg Gardens. He wore blue Nike sweatpants, a blue polo shirt, orange socks, charcoal-gray sneakers and white-framed sunglasses with red accents that inevitably drew attention to his most distinctive feature, a tangle of salt-and-pepper hair rising skyward from his head. Under a canopy of chestnut trees, Karp executed a series of elegant tai chi and qigong moves, shifting the pebbles and dirt gently under his feet as he twisted and turned. A group of teenagers watched in amusement. After 10 minutes or so, Karp walked to a nearby bench, where one of his bodyguards had placed a cooler and what looked like an instrument case. The cooler held several bottles of the nonalcoholic German beer that Karp drinks (he would crack one open on the way out of the park). The case contained a wooden sword, which he needed for the next part of his routine. "I brought a real sword the last time I was here, but the police stopped me," he said matter of factly as he began slashing the air with the sword. Those gendarmes evidently didn't know that Karp, far from being a public menace, was the chief executive of an American company whose software has been deployed on behalf of public safety in France. The company, Palantir Technologies, is named after the seeing stones in J.R.R. Tolkien's "The Lord of the Rings." Its two primary software programs, Gotham and Foundry, gather and process vast quantities of data in order to identify connections, patterns and trends that might elude human analysts. The stated goal of all this "data integration" is to help organizations make better decisions, and many of Palantir's customers consider its technology to be transformative. Karp claims a loftier ambition, however. "We built our company to support the West," he says. To that end, Palantir says it does not do business in countries that it considers adversarial to the U.S. and its allies, namely China and Russia. In the company's early days, Palantir employees, invoking Tolkien, described their mission as "saving the shire." The brainchild of Karp's friend and law-school classmate Peter Thiel, Palantir was founded in 2003. It was seeded in part by In-Q-Tel, the C.I.A.'s venture-capital arm, and the C.I.A. remains a client. Palantir's technology is rumored to have been used to track down Osama bin Laden -- a claim that has never been verified but one that has conferred an enduring mystique on the company. These days, Palantir is used for counterterrorism by a number of Western governments.

The Short Anthropological Guide to the Study of Ethical AI Artificial Intelligence

Over the next few years, society as a whole will need to address what core values it wishes to protect when dealing with technology. Anthropology, a field dedicated to the very notion of what it means to be human, can provide some interesting insights into how to cope and tackle these changes in our Western society and other areas of the world. It can be challenging for social science practitioners to grasp and keep up with the pace of technological innovation, with many being unfamiliar with the jargon of AI. This short guide serves as both an introduction to AI ethics and social science and anthropological perspectives on the development of AI. It intends to provide those unfamiliar with the field with an insight into the societal impact of AI systems and how, in turn, these systems can lead us to rethink how our world operates.