Goto

Collaborating Authors

Results


6 business risks of shortchanging AI ethics and governance

#artificialintelligence

Depending on which Terminator movies you watch, the evil artificial intelligence Skynet has either already taken over humanity or is about to do so. But it's not just science fiction writers who are worried about the dangers of uncontrolled AI. In a 2019 survey by Emerj, an AI research and advisory company, 14% of AI researchers said that AI was an "existential threat" to humanity. Even if the AI apocalypse doesn't come to pass, shortchanging AI ethics poses big risks to society -- and to the enterprises that deploy those AI systems. Central to these risks are factors inherent to the technology -- for example, how a particular AI system arrives at a given conclusion, known as its "explainability" -- and those endemic to an enterprise's use of AI, including reliance on biased data sets or deploying AI without adequate governance in place.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Explainable AI for B5G/6G: Technical Aspects, Use Cases, and Research Challenges

arXiv.org Artificial Intelligence

When 5G began its commercialisation journey around 2020, the discussion on the vision of 6G also surfaced. Researchers expect 6G to have higher bandwidth, coverage, reliability, energy efficiency, lower latency, and, more importantly, an integrated "human-centric" network system powered by artificial intelligence (AI). Such a 6G network will lead to an excessive number of automated decisions made every second. These decisions can range widely, from network resource allocation to collision avoidance for self-driving cars. However, the risk of losing control over decision-making may increase due to high-speed data-intensive AI decision-making beyond designers and users' comprehension. The promising explainable AI (XAI) methods can mitigate such risks by enhancing the transparency of the black box AI decision-making process. This survey paper highlights the need for XAI towards the upcoming 6G age in every aspect, including 6G technologies (e.g., intelligent radio, zero-touch network management) and 6G use cases (e.g., industry 5.0). Moreover, we summarised the lessons learned from the recent attempts and outlined important research challenges in applying XAI for building 6G systems. This research aligns with goals 9, 11, 16, and 17 of the United Nations Sustainable Development Goals (UN-SDG), promoting innovation and building infrastructure, sustainable and inclusive human settlement, advancing justice and strong institutions, and fostering partnership at the global level.


On the Opportunities and Risks of Foundation Models

arXiv.org Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.


The State of AI Ethics Report (June 2020)

arXiv.org Artificial Intelligence

These past few months have been especially challenging, and the deployment of technology in ways hitherto untested at an unrivalled pace has left the internet and technology watchers aghast. Artificial intelligence has become the byword for technological progress and is being used in everything from helping us combat the COVID-19 pandemic to nudging our attention in different directions as we all spend increasingly larger amounts of time online. It has never been more important that we keep a sharp eye out on the development of this field and how it is shaping our society and interactions with each other. With this inaugural edition of the State of AI Ethics we hope to bring forward the most important developments that caught our attention at the Montreal AI Ethics Institute this past quarter. Our goal is to help you navigate this ever-evolving field swiftly and allow you and your organization to make informed decisions. This pulse-check for the state of discourse, research, and development is geared towards researchers and practitioners alike who are making decisions on behalf of their organizations in considering the societal impacts of AI-enabled solutions. We cover a wide set of areas in this report spanning Agency and Responsibility, Security and Risk, Disinformation, Jobs and Labor, the Future of AI Ethics, and more. Our staff has worked tirelessly over the past quarter surfacing signal from the noise so that you are equipped with the right tools and knowledge to confidently tread this complex yet consequential domain.


The 2018 Survey: AI and the Future of Humans

#artificialintelligence

"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.


A 20-Year Community Roadmap for Artificial Intelligence Research in the US

arXiv.org Artificial Intelligence

Decades of research in artificial intelligence (AI) have produced formidable technologies that are providing immense benefit to industry, government, and society. AI systems can now translate across multiple languages, identify objects in images and video, streamline manufacturing processes, and control cars. The deployment of AI systems has not only created a trillion-dollar industry that is projected to quadruple in three years, but has also exposed the need to make AI systems fair, explainable, trustworthy, and secure. Future AI systems will rightfully be expected to reason effectively about the world in which they (and people) operate, handling complex tasks and responsibilities effectively and ethically, engaging in meaningful communication, and improving their awareness through experience. Achieving the full potential of AI technologies poses research challenges that require a radical transformation of the AI research enterprise, facilitated by significant and sustained investment. These are the major recommendations of a recent community effort coordinated by the Computing Community Consortium and the Association for the Advancement of Artificial Intelligence to formulate a Roadmap for AI research and development over the next two decades.


What is AI? Everything you need to know about Artificial Intelligence ZDNet

#artificialintelligence

This ebook, based on the latest ZDNet / TechRepublic special feature, advises CXOs on how to approach AI and ML initiatives, figure out where the data science team fits in, and what algorithms to buy versus build. It depends who you ask. Back in the 1950s, the fathers of the field Minsky and McCarthy, described artificial intelligence as any task performed by a program or a machine that, if a human carried out the same activity, we would say the human had to apply intelligence to accomplish the task. That obviously is a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not. AI systems will typically demonstrate at least some of the following behaviors associated with human intelligence: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity. AI is ubiquitous today, used to recommend what you should buy next online, to understand what you say to virtual assistants such as Amazon's Alexa and Apple's Siri, to recognise who and what is in a photo, to spot spam, or detect credit card fraud. AI might be a hot topic but you'll still need to justify those projects.


What is AI? Everything you need to know about Artificial Intelligence ZDNet

#artificialintelligence

Video: Getting started with artificial intelligence and machine learning It depends who you ask. Back in the 1950s, the fathers of the field Minsky andMcCarthy, described artificial intelligence as any task performed by a program or a machine that, if a human carried out the same activity, we would say the human had to apply intelligence to accomplish the task. That obviously is a fairly broad definition, which is why you will sometimes see arguments over whether something is truly AI or not. AI systems will typically demonstrate at least some of the following behaviors associated with human intelligence: planning, learning, reasoning, problem solving, knowledge representation, perception, motion, and manipulation and, to a lesser extent, social intelligence and creativity. AI is ubiquitous today, used to recommend what you should buy next online, to recognise what you say to virtual assistants such as Amazon's Alexa and Apple's Siri, to recognise who and what is in a photo, to spot spam, or detect credit card fraud. At a very high level artificial intelligence can be split into two broad types: narrow AI and general AI. Narrow AI is what we see all around us in computers today: intelligent systems that have been taught or learned how to carry out specific tasks without being explicitly programmed how to do so.