Well File:

Overview


Responsible Data Management

Communications of the ACM

Incorporating ethics and legal compliance into data-driven algorithmic systems has been attracting significant attention from the computing research community, most notably under the umbrella of fair8 and interpretable16 machine learning. While important, much of this work has been limited in scope to the "last mile" of data analysis and has disregarded both the system's design, development, and use life cycle (What are we automating and why? Is the system working as intended? Are there any unforeseen consequences post-deployment?) and the data life cycle (Where did the data come from? How long is it valid and appropriate?). In this article, we argue two points. First, the decisions we make during data collection and preparation profoundly impact the robustness, fairness, and interpretability of the systems we build. Second, our responsibility for the operation of these systems does not stop when they are deployed. To make our discussion concrete, consider the use of predictive analytics in hiring. Automated hiring systems are seeing ever broader use and are as varied as the hiring practices themselves, ranging from resume screeners that claim to identify promising applicantsa to video and voice analysis tools that facilitate the interview processb and game-based assessments that promise to surface personality traits indicative of future success.c Bogen and Rieke5 describe the hiring process from the employer's point of view as a series of decisions that forms a funnel, with stages corresponding to sourcing, screening, interviewing, and selection. The hiring funnel is an example of an automated decision system--a data-driven, algorithm-assisted process that culminates in job offers to some candidates and rejections to others. The popularity of automated hiring systems is due in no small part to our collective quest for efficiency.


AI remains priority for CEOs, according to new Gartner survey

#artificialintelligence

For the third year running, AI is the top priority for CEOs, according to a survey of CEOs and senior executives released by Gartner on Wednesday. The findings also revealed that the metaverse, which has received a lot of hype in the last year, especially since the rebranding of Facebook to Meta, is not as relevant to business leaders – 63% say that they do not see the metaverse as a key technology for their organization. It's not a big surprise that AI continues to be on the mind of top business leaders. As TechRepublic reported in June 2021, 97% of senior executives planned to invest heavily in AI. Jobs in AI, which are often high-pay, are also in demand, according to the jobs board Indeed.com.


A Brief Overview of Machine Learning

#artificialintelligence

As we randomly search terms on the internet, we often encounter "machine learning" and "deep learning" and how they are revolutionizing the way in which we live our lives. At present, machine learning is almost used everywhere from self-driving cars, email spam detection, recommender systems that we see in Netflix and Amazon, credit card fraud detection used by banks and so on. The list goes on and on with potential new applications being created. Therefore, it is very important to stay updated with the latest trends and understand what machine learning actually is and get a good broader understanding of some of the types of machine learning. In this article, I would explain machine learning and the different categories of machine learning.


6G and Artificial Intelligence Technologies for Dementia Care: Literature Review and Practical Analysis

#artificialintelligence

Background: The dementia epidemic is progressing fast. As the world's older population keeps skyrocketing, the traditional incompetent, time-consuming, and laborious interventions are becoming increasingly insufficient to address dementia patients' health care needs. This is particularly true amid COVID-19. Instead, efficient, cost-effective, and technology-based strategies, such as sixth-generation communication solutions (6G) and artificial intelligence (AI)-empowered health solutions, might be the key to successfully managing the dementia epidemic until a cure becomes available. However, while 6G and AI technologies hold great promise, no research has examined how 6G and AI applications can effectively and efficiently address dementia patients' health care needs and improve their quality of life.


Resonance as a Design Strategy for AI and Social Robots

#artificialintelligence

Resonance, a powerful and pervasive phenomenon, appears to play a major role in human interactions. This article investigates the relationship between the physical mechanism of resonance and the human experience of resonance, and considers possibilities for enhancing the experience of resonance within human–robot interactions. We first introduce resonance as a widespread cultural and scientific metaphor. Then, we review the nature of “sympathetic resonance” as a physical mechanism. Following this introduction, the remainder of the article is organized in two parts. In part one, we review the role of resonance (including synchronization and rhythmic entrainment) in human cognition and social interactions. Then, in part two, we review resonance-related phenomena in robotics and artificial intelligence (AI). These two reviews serve as ground for the introduction of a design strategy and combinatorial design space for shaping resonant interactions with robots and AI. We conclude by posing hypotheses and research questions for future empirical studies and discuss a range of ethical and aesthetic issues associated with resonance in human–robot interactions.


A Data-Driven Exploration of the Race between Human Labor and Machines in the 21st Century

Communications of the ACM

Anxiety about automation is prevalent in this era of rapid technological advances, especially in artificial intelligence (AI), machine learning (ML), and robotics. Accordingly, how human labor competes, or cooperates, with machines in performing a range of tasks (what we term "the race between human labor and machines") has attracted a great deal of attention among the public, policymakers, and researchers.14,15,18 While there have been persistent concerns about new technology and automation replacing human tasks at least since the Industrial Revolution,8 recent technological advances in executing sophisticated and complex tasks--enabled by a combinatorial innovation of new techniques and algorithms, advances in computational power, and exponential increases in data--differentiate the 21st century from previous ones.14 For instance, recent advances in autonomous self-driving cars demonstrate the way a wide range of human tasks that have been considered least susceptible to automation may no longer be safe from automation and computerization. Another case in point is human competition against machines, such as IBM's Watson on the TV game show "Jeopardy!" Both cases imply that some tasks, such as pattern recognition and information processing, are being rapidly computerized. Furthermore, recent studies suggest that robotics also plays a role in automating manual tasks and decreasing employment of low-wage workers.3,22


Building artificial intelligence and machine learning models : a primer for emergency physicians

#artificialintelligence

There has been a rise in the number of studies relating to the role of artificial intelligence (AI) in healthcare. Its potential in Emergency Medicine (EM) has been explored in recent years with operational, predictive, diagnostic and prognostic emergency department (ED) implementations being developed. For EM researchers building models de novo, collaborative working with data scientists is invaluable throughout the process. Synergism and understanding between domain (EM) and data experts increases the likelihood of realising a successful real-world model. Our linked manuscript provided a conceptual framework (including a glossary of AI terms) to support clinicians in interpreting AI research. The aim of this paper is to supplement that framework by exploring the key issues for clinicians and researchers to consider in the process of developing an AI model.


MATRIX Fact Sheet 1

#artificialintelligence

Matrix AI Network employed AI-Optimization to create a secure high-performance open source blockchain. MANAS is a distributed AI Service Platform built on MATRIX Mainnet. Its functions include AI model training, AI algorithmic model authentication, algorithmic model transaction, paid access to algorithmic models through API, etc. We aim to build a distributed AI network where everyone can build, share, and profit from AI services. Matrix AI continues to build in every field where artificial intelligence is needed.


Using artificial intelligence in health sciences education requires interdisciplinary collaboration and risk assessment

AIHub

Over the past five years, there has been an increase in research and development related to the use of artificial intelligence (AI) in health sciences education in fields such as medicine, nursing and occupational therapy. AI-enhanced technologies have been shown to have educational value and offer flexibility for students. For example, learning scenarios can be repeated and completed remotely, and educational experiences can be standardized. However, AI's applications in health sciences education need to be explored further. To better understand advances in research and applications of AI as a part of the education of health sciences students, we conducted a comprehensive literature review.


5 Leaders of Artificial Intelligence

#artificialintelligence

There is no reason and no way that a human mind can keep up with an artificial intelligence machine by 2035. Data reveals that the Artificial Intelligence industry is growing rapidly and is expected to reach 126 billion U.S. dollars by 2025. But, what are the leading companies contributing to the AI world? That we'll find out today. In this article, I'll give you an overview of the 5 top Artificial Intelligence companies that are leading the market.