Goto

Collaborating Authors

Text Classification: Overviews


Deep Learning Based Text Classification: A Comprehensive Review

arXiv.org Machine Learning

Deep learning based models have surpassed classical machine learning based approaches in various text classification tasks, including sentiment analysis, news categorization, question answering, and natural language inference. In this work, we provide a detailed review of more than 150 deep learning based models for text classification developed in recent years, and discuss their technical contributions, similarities, and strengths. We also provide a summary of more than 40 popular datasets widely used for text classification. Finally, we provide a quantitative analysis of the performance of different deep learning models on popular benchmarks, and discuss future research directions.


Seeing The Whole Patient: Using Multi-Label Medical Text Classification Techniques to Enhance Predictions of Medical Codes

arXiv.org Machine Learning

Machine learning-based multi-label medical text classifications can be used to enhance the understanding of the human body and aid the need for patient care. We present a broad study on clinical natural language processing techniques to maximise a feature representing text when predicting medical codes on patients with multi-morbidity. We present results of multi-label medical text classification problems with 18, 50 and 155 labels. We compare several variations to embeddings, text tagging, and pre-processing. For imbalanced data we show that labels which occur infrequently, benefit the most from additional features incorporated in embeddings. We also show that high dimensional embeddings pre-trained using health-related data present a significant improvement in a multi-label setting, similarly to the way they improve performance for binary classification. High dimensional embeddings from this research are made available for public use.


Simultaneous Identification of Tweet Purpose and Position

arXiv.org Machine Learning

Tweet classification has attracted considerable attention recently. Most of the existing work on tweet classification focuses on topic classification, which classifies tweets into several predefined categories, and sentiment classification, which classifies tweets into positive, negative and neutral. Since tweets are different from conventional text in that they generally are of limited length and contain informal, irregular or new words, so it is difficult to determine user intention to publish a tweet and user attitude towards certain topic. In this paper, we aim to simultaneously classify tweet purpose, i.e., the intention for user to publish a tweet, and position, i.e., supporting, opposing or being neutral to a given topic. By transforming this problem to a multi-label classification problem, a multi-label classification method with post-processing is proposed. Experiments on real-world data sets demonstrate the effectiveness of this method and the results outperform the individual classification methods.


A Framework for Explainable Text Classification in Legal Document Review

arXiv.org Artificial Intelligence

Companies regularly spend millions of dollars producing electronically-stored documents in legal matters. Recently, parties on both sides of the 'legal aisle' are accepting the use of machine learning techniques like text classification to cull massive volumes of data and to identify responsive documents for use in these matters. While text classification is regularly used to reduce the discovery costs in legal matters, it also faces a peculiar perception challenge: amongst lawyers, this technology is sometimes looked upon as a "black box", little information provided for attorneys to understand why documents are classified as responsive. In recent years, a group of AI and ML researchers have been actively researching Explainable AI, in which actions or decisions are human understandable. In legal document review scenarios, a document can be identified as responsive, if one or more of its text snippets are deemed responsive. In these scenarios, if text classification can be used to locate these snippets, then attorneys could easily evaluate the model's classification decision. When deployed with defined and explainable results, text classification can drastically enhance overall quality and speed of the review process by reducing the review time. Moreover, explainable predictive coding provides lawyers with greater confidence in the results of that supervised learning task. This paper describes a framework for explainable text classification as a valuable tool in legal services: for enhancing the quality and efficiency of legal document review and for assisting in locating responsive snippets within responsive documents. This framework has been implemented in our legal analytics product, which has been used in hundreds of legal matters. We also report our experimental results using the data from an actual legal matter that used this type of document review.


Word-Class Embeddings for Multiclass Text Classification

arXiv.org Machine Learning

Pre-trained word embeddings encode general word semantics and lexical regularities of natural language, and have proven useful across many NLP tasks, including word sense disambiguation, machine translation, and sentiment analysis, to name a few. In supervised tasks such as multiclass text classification (the focus of this article) it seems appealing to enhance word representations with ad-hoc embeddings that encode task-specific information. We propose (supervised) word-class embeddings (WCEs), and show that, when concatenated to (unsupervised) pre-trained word embeddings, they substantially facilitate the training of deep-learning models in multiclass classification by topic. We show empirical evidence that WCEs yield a consistent improvement in multiclass classification accuracy, using four popular neural architectures and six widely used and publicly available datasets for multiclass text classification. Our code that implements WCEs is publicly available at https://github.com/AlexMoreo/word-class-embeddings


Advances in Machine Learning for the Behavioral Sciences

arXiv.org Machine Learning

The areas of machine learning and knowledge discovery in databases have considerably matured in recent years. In this article, we briefly review recent developments as well as classical algorithms that stood the test of time. Our goal is to provide a general introduction into different tasks such as learning from tabular data, behavioral data, or textual data, with a particular focus on actual and potential applications in behavioral sciences. The supplemental appendix to the article also provides practical guidance for using the methods by pointing the reader to proven software implementations. The focus is on R, but we also cover some libraries in other programming languages as well as systems with easy-to-use graphical interfaces.


Learning Only from Relevant Keywords and Unlabeled Documents

arXiv.org Machine Learning

We consider a document classification problem where document labels are absent but only relevant keywords of a target class and unlabeled documents are given. Although heuristic methods based on pseudo-labeling have been considered, theoretical understanding of this problem has still been limited. Moreover, previous methods cannot easily incorporate well-developed techniques in supervised text classification. In this paper, we propose a theoretically guaranteed learning framework that is simple to implement and has flexible choices of models, e.g., linear models or neural networks. We demonstrate how to optimize the area under the receiver operating characteristic curve (AUC) effectively and also discuss how to adjust it to optimize other well-known evaluation metrics such as the accuracy and F1-measure. Finally, we show the effectiveness of our framework using benchmark datasets.


Hierarchical Taxonomy-Aware and Attentional Graph Capsule RCNNs for Large-Scale Multi-Label Text Classification

arXiv.org Machine Learning

CNNs, RNNs, GCNs, and CapsNets have shown significant insights in representation learning and are widely used in various text mining tasks such as large-scale multi-label text classification. However, most existing deep models for multi-label text classification consider either the non-consecutive and long-distance semantics or the sequential semantics, but how to consider them both coherently is less studied. In addition, most existing methods treat output labels as independent methods, but ignore the hierarchical relations among them, leading to useful semantic information loss. In this paper, we propose a novel hierarchical taxonomy-aware and attentional graph capsule recurrent CNNs framework for large-scale multi-label text classification. Specifically, we first propose to model each document as a word order preserved graph-of-words and normalize it as a corresponding words-matrix representation which preserves both the non-consecutive, long-distance and local sequential semantics. Then the words-matrix is input to the proposed attentional graph capsule recurrent CNNs for more effectively learning the semantic features. To leverage the hierarchical relations among the class labels, we propose a hierarchical taxonomy embedding method to learn their representations, and define a novel weighted margin loss by incorporating the label representation similarity. Extensive evaluations on three datasets show that our model significantly improves the performance of large-scale multi-label text classification by comparing with state-of-the-art approaches.


Text Classification Algorithms: A Survey

arXiv.org Artificial Intelligence

In recent years, there has been an exponential growth in the number of complex documents and texts that require a deeper understanding of machine learning methods to be able to accurately classify texts in many applications. Many machine learning approaches have achieved surpassing results in natural language processing. The success of these learning algorithms relies on their capacity to understand complex models and non-linear relationships within data. However, finding suitable structures, architectures, and techniques for text classification is a challenge for researchers. In this paper, a brief overview of text classification algorithms is discussed. This overview covers different text feature extractions, dimensionality reduction methods, existing algorithms and techniques, and evaluations methods. Finally, the limitations of each technique and their application in the real-world problem are discussed.


Machine Learning for Seizure Type Classification: Setting the benchmark

arXiv.org Machine Learning

Accurate classification of seizure types plays a crucial role in the treatment and disease management of epileptic patients. Epileptic seizure type not only impacts on the choice of drugs but also on the range of activities a patient can safely engage in. With recent advances being made towards artificial intelligence enabled automatic seizure detection, the next frontier is the automatic classification of seizure types. On that note, in this paper, we undertake the first study to explore the application of machine learning algorithms for multi-class seizure type classification. We used the recently released TUH EEG Seizure Corpus and conducted a thorough search space exploration to evaluate the performance of a combination of various pre-processing techniques, machine learning algorithms, and corresponding hyperparameters on this task. We show that our algorithms can reach a weighted F1 score of up to 0.907 thereby setting the first benchmark for scalp EEG based multi-class seizure type classification.