Text Classification: Overviews

Machine Learning for Seizure Type Classification: Setting the benchmark

arXiv.org Machine Learning

Accurate classification of seizure types plays a crucial role in the treatment and disease management of epileptic patients. Epileptic seizure type not only impacts on the choice of drugs but also on the range of activities a patient can safely engage in. With recent advances being made towards artificial intelligence enabled automatic seizure detection, the next frontier is the automatic classification of seizure types. On that note, in this paper, we undertake the first study to explore the application of machine learning algorithms for multi-class seizure type classification. We used the recently released TUH EEG Seizure Corpus and conducted a thorough search space exploration to evaluate the performance of a combination of various pre-processing techniques, machine learning algorithms, and corresponding hyperparameters on this task. We show that our algorithms can reach a weighted F1 score of up to 0.907 thereby setting the first benchmark for scalp EEG based multi-class seizure type classification.

Weakly-Supervised Neural Text Classification

arXiv.org Machine Learning

Deep neural networks are gaining increasing popularity for the classic text classification task, due to their strong expressive power and less requirement for feature engineering. Despite such attractiveness, neural text classification models suffer from the lack of training data in many real-world applications. Although many semi-supervised and weakly-supervised text classification models exist, they cannot be easily applied to deep neural models and meanwhile support limited supervision types. In this paper, we propose a weakly-supervised method that addresses the lack of training data in neural text classification. Our method consists of two modules: (1) a pseudo-document generator that leverages seed information to generate pseudo-labeled documents for model pre-training, and (2) a self-training module that bootstraps on real unlabeled data for model refinement. Our method has the flexibility to handle different types of weak supervision and can be easily integrated into existing deep neural models for text classification. We have performed extensive experiments on three real-world datasets from different domains. The results demonstrate that our proposed method achieves inspiring performance without requiring excessive training data and outperforms baseline methods significantly.

Health Research is Time-Consuming and Expensive, but Machine Learning Could Change That


From climate change to opioid addiction, we are facing serious public health crises that put our research and data management experts to the test. When it comes to scientific evidence, systematic literature reviews--painstaking assessments of all the literature ever produced on a given subject--are often regarded as the gold standard. Though no research method is foolproof, says Vox health correspondent Julia Belluz, "these studies represent the best available syntheses of global evidence about the likely effects of different decisions, therapies and policies." That comprehensiveness comes at high price, though, in terms of time and money. It involves sifting through enormous volumes of literature--sometimes hundreds of thousands of scientific abstracts--stored in academic databases.

Hierarchical Attention Transfer Network for Cross-Domain Sentiment Classification

AAAI Conferences

Cross-domain sentiment classification aims to leverage useful information in a source domain to help do sentiment classification in a target domain that has no or little supervised information. Existing cross-domain sentiment classification methods cannot automatically capture non-pivots, i.e., the domain-specific sentiment words, and pivots, i.e., the domain-shared sentiment words, simultaneously. In order to solve this problem, we propose a Hierarchical Attention Transfer Network (HATN) for cross-domain sentiment classification. The proposed HATN provides a hierarchical attention transfer mechanism which can transfer attentions for emotions across domains by automatically capturing pivots and non-pivots. Besides, the hierarchy of the attention mechanism mirrors the hierarchical structure of documents, which can help locate the pivots and non-pivots better. The proposed HATN consists of two hierarchical attention networks, with one named P-net aiming to find the pivots and the other named NP-net aligning the non-pivots by using the pivots as a bridge. Specifically, P-net firstly conducts individual attention learning to provide positive and negative pivots for NP-net. Then, P-net and NP-net conduct joint attention learning such that the HATN can simultaneously capture pivots and non-pivots and realize transferring attentions for emotions across domains. Experiments on the Amazon review dataset demonstrate the effectiveness of HATN.

A framework for automated rating of online reviews against the underlying topics


Even though the most online review systems offer star rating in addition to free text reviews, this only applies to the overall review. However, different users may have different preferences in relation to different aspects of a product or a service and may struggle to extract relevant information from a massive amount of consumer reviews available online. In this paper, we present a framework for extracting prevalent topics from online reviews and automatically rating them on a 5-star scale. It consists of five modules, including linguistic pre-processing, topic modelling, text classification, sentiment analysis, and rating. Topic modelling is used to extract prevalent topics, which are then used to classify individual sentences against these topics.

Persistent homology machine learning for fingerprint classification

arXiv.org Machine Learning

The fingerprint classification problem is to sort fingerprints into pre-determined groups, such as arch, loop, and whorl. It was asserted in the literature that minutiae points, which are commonly used for fingerprint matching, are not useful for classification. We show that, to the contrary, near state-of-the-art classification accuracy rates can be achieved when applying topological data analysis (TDA) to 3-dimensional point clouds of oriented minutiae points. We also apply TDA to fingerprint ink-roll images, which yields a lower accuracy rate but still shows promise, particularly since the only preprocessing is cropping; moreover, combining the two approaches outperforms each one individually. These methods use supervised learning applied to persistent homology and allow us to explore feature selection on barcodes, an important topic at the interface between TDA and machine learning. We test our classification algorithms on the NIST fingerprint database SD-27.