Plotting

Kernel Methods: Overviews


Spatial Analysis Made Easy with Linear Regression and Kernels

arXiv.org Machine Learning

Kernel methods are an incredibly popular technique for extending linear models to non-linear problems via a mapping to an implicit, high-dimensional feature space. While kernel methods are computationally cheaper than an explicit feature mapping, they are still subject to cubic cost on the number of points. Given only a few thousand locations, this computational cost rapidly outstrips the currently available computational power. This paper aims to provide an overview of kernel methods from first-principals (with a focus on ridge regression), before progressing to a review of random Fourier features (RFF), a set of methods that enable the scaling of kernel methods to big datasets. At each stage, the associated R code is provided. We begin by illustrating how the dual representation of ridge regression relies solely on inner products and permits the use of kernels to map the data into high-dimensional spaces. We progress to RFFs, showing how only a few lines of code provides a significant computational speed-up for a negligible cost to accuracy. We provide an example of the implementation of RFFs on a simulated spatial data set to illustrate these properties. Lastly, we summarise the main issues with RFFs and highlight some of the advanced techniques aimed at alleviating them.


Supervised learning with quantum enhanced feature spaces

arXiv.org Machine Learning

Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and use two novel methods which represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers to machine learning.


Complex-Valued Kernel Methods for Regression

arXiv.org Machine Learning

Usually, complex-valued RKHS are presented as an straightforward application of the real-valued case. In this paper we prove that this procedure yields a limited solution for regression. We show that another kernel, here denoted as pseudo kernel, is needed to learn any function in complex-valued fields. Accordingly, we derive a novel RKHS to include it, the widely RKHS (WRKHS). When the pseudo-kernel cancels, WRKHS reduces to complex-valued RKHS of previous approaches. We address the kernel and pseudo-kernel design, paying attention to the kernel and the pseudo-kernel being complex-valued. In the experiments included we report remarkable improvements in simple scenarios where real a imaginary parts have different similitude relations for given inputs or cases where real and imaginary parts are correlated. In the context of these novel results we revisit the problem of non-linear channel equalization, to show that the WRKHS helps to design more efficient solutions.


Kernels for Vector-Valued Functions: a Review

arXiv.org Artificial Intelligence

Kernel methods are among the most popular techniques in machine learning. From a frequentist/discriminative perspective they play a central role in regularization theory as they provide a natural choice for the hypotheses space and the regularization functional through the notion of reproducing kernel Hilbert spaces. From a Bayesian/generative perspective they are the key in the context of Gaussian processes, where the kernel function is also known as the covariance function. Traditionally, kernel methods have been used in supervised learning problem with scalar outputs and indeed there has been a considerable amount of work devoted to designing and learning kernels. More recently there has been an increasing interest in methods that deal with multiple outputs, motivated partly by frameworks like multitask learning. In this paper, we review different methods to design or learn valid kernel functions for multiple outputs, paying particular attention to the connection between probabilistic and functional methods.


A Kernel Method for the Two-Sample-Problem

Neural Information Processing Systems

W e propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic.


A Kernel Method for the Two-Sample-Problem

Neural Information Processing Systems

We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic.


A Kernel Method for the Two-Sample-Problem

Neural Information Processing Systems

We propose two statistical tests to determine if two samples are from different distributions. Our test statistic is in both cases the distance between the means of the two samples mapped into a reproducing kernel Hilbert space (RKHS). The first test is based on a large deviation bound for the test statistic, while the second is based on the asymptotic distribution of this statistic.