Goto

Collaborating Authors

Results


Latent gaze information in highly dynamic decision-tasks

arXiv.org Artificial Intelligence

Digitization is penetrating more and more areas of life. Tasks are increasingly being completed digitally, and are therefore not only fulfilled faster, more efficiently but also more purposefully and successfully. The rapid developments in the field of artificial intelligence in recent years have played a major role in this, as they brought up many helpful approaches to build on. At the same time, the eyes, their movements, and the meaning of these movements are being progressively researched. The combination of these developments has led to exciting approaches. In this dissertation, I present some of these approaches which I worked on during my Ph.D. First, I provide insight into the development of models that use artificial intelligence to connect eye movements with visual expertise. This is demonstrated for two domains or rather groups of people: athletes in decision-making actions and surgeons in arthroscopic procedures. The resulting models can be considered as digital diagnostic models for automatic expertise recognition. Furthermore, I show approaches that investigate the transferability of eye movement patterns to different expertise domains and subsequently, important aspects of techniques for generalization. Finally, I address the temporal detection of confusion based on eye movement data. The results suggest the use of the resulting model as a clock signal for possible digital assistance options in the training of young professionals. An interesting aspect of my research is that I was able to draw on very valuable data from DFB youth elite athletes as well as on long-standing experts in arthroscopy. In particular, the work with the DFB data attracted the interest of radio and print media, namely DeutschlandFunk Nova and SWR DasDing. All resulting articles presented here have been published in internationally renowned journals or at conferences.


Artificial Intelligence Project Ideas for 2022 - KDnuggets

#artificialintelligence

As a beginner in the data science industry, you must have read countless articles describing the importance of creating data science projects. In fact, I landed my first data science role due to the projects I showcased on my portfolio. However, not every data science project can land you a role in the industry. I have reviewed resumes of data science applicants in the past, most of whom were rejected from entry-level positions without even making it to the interview phase. Some of these candidates did include projects on their resume -- but the projects they showcased were too simple.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


Python A-Z : Python For Data Science With Real Exercises!

#artificialintelligence

Learn Statistical Analysis, Data Mining And Visualization Created by Kirill Eremenko, SuperDataScience Team English, Portuguese [Auto-generated] Students also bought Deep Learning Prerequisites: The Numpy Stack in Python (V2) Learning Python for Data Analysis and Visualization Tableau 2020 A-Z:Hands-On Tableau Training For Data Science! Python for Data Science and Machine Learning Bootcamp The Complete SQL Bootcamp 2020: Go from Zero to Hero Preview this Course GET COUPON CODE Description Learn Python Programming by doing! There are lots of Python courses and lectures out there. However, Python has a very steep learning curve and students often get overwhelmed. This course is truly step-by-step.


Finetuning Transformer Models to Build ASAG System

arXiv.org Artificial Intelligence

Research towards creating systems for automatic grading of student answers to quiz and exam questions in educational settings has been ongoing since 1966. Over the years, the problem was divided into many categories. Among them, grading text answers were divided into short answer grading, and essay grading. The goal of this work was to develop an ML-based short answer grading system. I hence built a system which uses finetuning on Roberta Large Model pretrained on STS benchmark dataset and have also created an interface to show the production readiness of the system. I evaluated the performance of the system on the Mohler extended dataset and SciEntsBank Dataset. The developed system achieved a Pearsons Correlation of 0.82 and RMSE of 0.7 on the Mohler Dataset which beats the SOTA performance on this dataset which is correlation of 0.805 and RMSE of 0.793. Additionally, Pearsons Correlation of 0.79 and RMSE of 0.56 was achieved on the SciEntsBank Dataset, which only reconfirms the robustness of the system. A few observations during achieving these results included usage of batch size of 1 produced better results than using batch size of 16 or 32 and using huber loss as loss function performed well on this regression task. The system was tried and tested on train and validation splits using various random seeds and still has been tweaked to achieve a minimum of 0.76 of correlation and a maximum 0.15 (out of 1) RMSE on any dataset.


The Data Analyst Course: Complete Data Analyst Bootcamp 2021

#artificialintelligence

Created by Andrei Neagoie, Daniel BourkePreview this Course - GET COUPON CODE This is a brand new Machine Learning and Data Science course just launched and updated this month with the latest trends and skills for 2021! Become a complete Data Scientist and Machine Learning engineer! Join a live online community of 400,000 engineers and a course taught by industry experts that have actually worked for large companies in places like Silicon Valley and Toronto. Graduates of Andrei's courses are now working at Google, Tesla, Amazon, Apple, IBM, JP Morgan, Facebook, other top tech companies. You will go from zero to mastery! Learn Data Science and Machine Learning from scratch, get hired, and have fun along the way with the most modern, up-to-date Data Science course on Udemy (we use the latest version of Python, Tensorflow 2.0 and other libraries).


Top Stories, Jul 12-18: Top 6 Data Science Online Courses in 2021; Become an Analytics Engineer in 90 Days - KDnuggets

#artificialintelligence

Also: Data Scientists and ML Engineers Are Luxury Employees; Geometric foundations of Deep Learning; How Can You Distinguish Yourself from Hundreds of Other Data Science Candidates?; A Learning Path To Becoming a Data Scientist


5 Tips to Boost Your Data Science Learning

#artificialintelligence

Many guides give you advice on how to get started in data science: which online courses to take, which projects to implement for your portfolio, and which skills to acquire. But what if you got started with your learning journey, and now you are somewhere in the middle and don't know where to go next? After finishing my Data Scientist nanodegree at Udacity, I was at that middle point. I had built a foundation in various data science topics -- ML, deep neural networks, NLP, recommendation systems, and more -- and my learning curve had been very steep. So I felt that simply taking another online course wouldn't yield as many "things learned per day."


The Role of Social Movements, Coalitions, and Workers in Resisting Harmful Artificial Intelligence and Contributing to the Development of Responsible AI

arXiv.org Artificial Intelligence

There is mounting public concern over the influence that AI based systems has in our society. Coalitions in all sectors are acting worldwide to resist hamful applications of AI. From indigenous people addressing the lack of reliable data, to smart city stakeholders, to students protesting the academic relationships with sex trafficker and MIT donor Jeffery Epstein, the questionable ethics and values of those heavily investing in and profiting from AI are under global scrutiny. There are biased, wrongful, and disturbing assumptions embedded in AI algorithms that could get locked in without intervention. Our best human judgment is needed to contain AI's harmful impact. Perhaps one of the greatest contributions of AI will be to make us ultimately understand how important human wisdom truly is in life on earth.


Jointly Modeling Heterogeneous Student Behaviors and Interactions Among Multiple Prediction Tasks

arXiv.org Artificial Intelligence

Prediction tasks about students have practical significance for both student and college. Making multiple predictions about students is an important part of a smart campus. For instance, predicting whether a student will fail to graduate can alert the student affairs office to take predictive measures to help the student improve his/her academic performance. With the development of information technology in colleges, we can collect digital footprints which encode heterogeneous behaviors continuously. In this paper, we focus on modeling heterogeneous behaviors and making multiple predictions together, since some prediction tasks are related and learning the model for a specific task may have the data sparsity problem. To this end, we propose a variant of LSTM and a soft-attention mechanism. The proposed LSTM is able to learn the student profile-aware representation from heterogeneous behavior sequences. The proposed soft-attention mechanism can dynamically learn different importance degrees of different days for every student. In this way, heterogeneous behaviors can be well modeled. In order to model interactions among multiple prediction tasks, we propose a co-attention mechanism based unit. With the help of the stacked units, we can explicitly control the knowledge transfer among multiple tasks. We design three motivating behavior prediction tasks based on a real-world dataset collected from a college. Qualitative and quantitative experiments on the three prediction tasks have demonstrated the effectiveness of our model.