Not enough data to create a plot.
Try a different view from the menu above.
Machines are eating humans' jobs talents. And it's not just about jobs that are repetitive and low-skill. Automation, robotics, algorithms and artificial intelligence (AI) in recent times have shown they can do equal or sometimes even better work than humans who are dermatologists, insurance claims adjusters, lawyers, seismic testers in oil fields, sports journalists and financial reporters, crew members on guided-missile destroyers, hiring managers, psychological testers, retail salespeople, and border patrol agents. Moreover, there is growing anxiety that technology developments on the near horizon will crush the jobs of the millions who drive cars and trucks, analyze medical tests and data, perform middle management chores, dispense medicine, trade stocks and evaluate markets, fight on battlefields, perform government functions, and even replace those who program software – that is, the creators of algorithms. People will create the jobs of the future, not simply train for them, ...
The 2012 publication Race against the Machine makes the case that the digitalization of work activities is proceeding so rapidly as to cause dislocations in the job market beyond anything previously experienced [1]. Unlike past mechanization/automation, which affected lower-skill blue-collar and white-collar work, today's information technology affects workers high in the education and skill distribution. Machines can substitute for brains as well as brawn. On one estimate, about 47% of total US employment is at risk of computerization [2]. If you doubt whether a robot or some other machine equipped with digital intelligence connected to the internet could outdo you or me in our work in the foreseeable future, consider news reports about an IBM program to "create" new food dishes (chefs beware), the battle between anesthesiologists and computer programs/robots that do their job much cheaper, and the coming version of Watson ("twice as powerful as the original") based on computers connected over the internet via IBM's Cloud [3].
The 2012 publication Race against the Machine makes the case that the digitalization of work activities is proceeding so rapidly as to cause dislocations in the job market beyond anything previously experienced [1]. Unlike past mechanization/automation, which affected lower-skill blue-collar and white-collar work, today's information technology affects workers high in the education and skill distribution. Machines can substitute for brains as well as brawn. On one estimate, about 47% of total US employment is at risk of computerization [2]. If you doubt whether a robot or some other machine equipped with digital intelligence connected to the internet could outdo you or me in our work in the foreseeable future, consider news reports about an IBM program to "create" new food dishes (chefs beware), the battle between anesthesiologists and computer programs/robots that do their job much cheaper, and the coming version of Watson ("twice as powerful as the original") based on computers connected over the internet via IBM's Cloud [3].
WWTS (What Would Turing Say?) Turing's Imitation Game was a brilliant Turing was heavily influenced by the World War II "game" If Turing were alive today, what sort of test might he propose? If a machine could fool interrogators as often as a typical man, then one would have to conclude that that machine, as programmed, was as intelligent as a person (well, as intelligent as men.) As Judy Genova (1994) puts it, Turing's originally proposed game involves not a question of species, but one of gender. The current version, where the interrogator is told he or she needs to distinguish a person from a machine, is (1) much more difficult to get a program to pass, and (2) almost all the added difficulties are largely irrelevant to intelligence! And it's possible to muddy the waters even more by some programs appearing to do well at it due to various tricks, such as having the interviewee program claim to be a 13-year-old Ukrainian who doesn't speak English well (University of Reading 2014), and hence having all its wrong or bizarre responses excused due to cultural, age, or language issues.
Madani, Omid (SRI International) | Bui, Hung (SRI International) | Yeh, Eric (SRI International)
We investigate prediction of users' desktop activities in the Unix domain. The learning techniques we explore do not require explicit user teaching. We show that simple efficient many-class learning can perform well for action prediction, significantly improving over previously published results and baselines. This finding is promising for various human-computer interaction scenarios where a rich set of potentially predictive features is available, where there can be many different actions to predict, and where there can be considerable nonstationarity.