Goto

Collaborating Authors

Results


The Many Faces of Exponential Weights in Online Learning

arXiv.org Machine Learning

A standard introduction to online learning might place Online Gradient Descent at its center and then proceed to develop generalizations and extensions like Online Mirror Descent and second-order methods. Here we explore the alternative approach of putting exponential weights (EW) first. We show that many standard methods and their regret bounds then follow as a special case by plugging in suitable surrogate losses and playing the EW posterior mean. For instance, we easily recover Online Gradient Descent by using EW with a Gaussian prior on linearized losses, and, more generally, all instances of Online Mirror Descent based on regular Bregman divergences also correspond to EW with a prior that depends on the mirror map. Furthermore, appropriate quadratic surrogate losses naturally give rise to Online Gradient Descent for strongly convex losses and to Online Newton Step. We further interpret several recent adaptive methods (iProd, Squint, and a variation of Coin Betting for experts) as a series of closely related reductions to exp-concave surrogate losses that are then handled by Exponential Weights. Finally, a benefit of our EW interpretation is that it opens up the possibility of sampling from the EW posterior distribution instead of playing the mean. As already observed by Bubeck and Eldan, this recovers the best-known rate in Online Bandit Linear Optimization.


Artificial Intelligence Website Creation 2018 (No Coding)

#artificialintelligence

This game-changing course will cover artificial intelligence tools in website, chatbot design and analytics which will help you to create website in minutes.


Black-Box Reductions for Parameter-free Online Learning in Banach Spaces

arXiv.org Machine Learning

We introduce several new black-box reductions that significantly improve the design of adaptive and parameter-free online learning algorithms by simplifying analysis, improving regret guarantees, and sometimes even improving runtime. We reduce parameter-free online learning to online exp-concave optimization, we reduce optimization in a Banach space to one-dimensional optimization, and we reduce optimization over a constrained domain to unconstrained optimization. All of our reductions run as fast as online gradient descent. We use our new techniques to improve upon the previously best regret bounds for parameter-free learning, and do so for arbitrary norms.


Dropout Model Evaluation in MOOCs

arXiv.org Machine Learning

The field of learning analytics needs to adopt a more rigorous approach for predictive model evaluation that matches the complex practice of model-building. In this work, we present a procedure to statistically test hypotheses about model performance which goes beyond the state-of-the-practice in the community to analyze both algorithms and feature extraction methods from raw data. We apply this method to a series of algorithms and feature sets derived from a large sample of Massive Open Online Courses (MOOCs). While a complete comparison of all potential modeling approaches is beyond the scope of this paper, we show that this approach reveals a large gap in dropout prediction performance between forum-, assignment-, and clickstream-based feature extraction methods, where the latter is significantly better than the former two, which are in turn indistinguishable from one another. This work has methodological implications for evaluating predictive or AI-based models of student success, and practical implications for the design and targeting of at-risk student models and interventions.



Analysis of Dropout in Online Learning

arXiv.org Machine Learning

Deep learning is the state-of-the-art in fields such as visual object recognition and speech recognition. This learning uses a large number of layers and a huge number of units and connections. Therefore, overfitting is a serious problem with it, and the dropout which is a kind of regularization tool is used. However, in online learning, the effect of dropout is not well known. This paper presents our investigation on the effect of dropout in online learning. We analyzed the effect of dropout on convergence speed near the singular point. Our results indicated that dropout is effective in online learning. Dropout tends to avoid the singular point for convergence speed near that point.


Machine Learning with R Programming - Udemy

@machinelearnbot

This course contains lectures as videos along with the hands-on implementation of the concepts, additional assignments are also provided in the last section for your self-practice, working files are provided along with the first lecture. This course contains lectures as videos along with the hands-on implementation of the concepts, additional assignments are also provided in the last section for your self-practice, working files are provided along with the first lecture.



Online Learning for Changing Environments using Coin Betting

arXiv.org Machine Learning

A key challenge in online learning is that classical algorithms can be slow to adapt to changing environments. Recent studies have proposed "meta" algorithms that convert any online learning algorithm to one that is adaptive to changing environments, where the adaptivity is analyzed in a quantity called the strongly-adaptive regret. This paper describes a new meta algorithm that has a strongly-adaptive regret bound that is a factor of $\sqrt{\log(T)}$ better than other algorithms with the same time complexity, where $T$ is the time horizon. We also extend our algorithm to achieve a first-order (i.e., dependent on the observed losses) strongly-adaptive regret bound for the first time, to our knowledge. At its heart is a new parameter-free algorithm for the learning with expert advice (LEA) problem in which experts sometimes do not output advice for consecutive time steps (i.e., \emph{sleeping} experts). This algorithm is derived by a reduction from optimal algorithms for the so-called coin betting problem. Empirical results show that our algorithm outperforms state-of-the-art methods in both learning with expert advice and metric learning scenarios.


Arduino Robotics, IOT, Gaming for kids, Parents & Beginners

@machinelearnbot

Be a Technology Creator Today!!! Discover the scientist in you. Are you excited to create something immediately without getting into too much subject theory which bores you? Then you have landed at the right course. Research has shown that theoretical learning leads to decrease in interest in the subject and is one of the biggest hindrances to learn new things or new Technology. That's why we have created a course for every body where you start building applications and learn theory along with it.