Plotting

Learning Management: Instructional Materials


Machine Learning: Learn By Building Web Apps in Python

#artificialintelligence

Machine learning is a branch of artificial intelligence (AI) focused on building applications that learn from data and improve their accuracy over time without being programmed to do so. In data science, an algorithm is a sequence of statistical processing steps. In machine learning, algorithms are'trained' to find patterns and features in massive amounts of data in order to make decisions and predictions based on new data. The better the algorithm, the more accurate the decisions and predictions will become as it processes more data. Machine learning has led to some amazing results, like being able to analyze medical images and predict diseases on-par with human experts.


Setting a new bar for online higher education

#artificialintelligence

The education sector was among the hardest hit by the COVID-19 pandemic. Schools across the globe were forced to shutter their campuses in the spring of 2020 and rapidly shift to online instruction. For many higher education institutions, this meant delivering standard courses and the "traditional" classroom experience through videoconferencing and various connectivity tools. The approach worked to support students through a period of acute crisis but stands in contrast to the offerings of online education pioneers. These institutions use AI and advanced analytics to provide personalized learning and on-demand student support, and to accommodate student preferences for varying digital formats.


Top 10 Machine Learning Boot Camps Aspirants Should Attend - TOP 10

#artificialintelligence

Machine learning technology can autonomously identify malignant tumors, pilot Teslas, and real-time machine learning algorithms are ground-breakingly independent. Machine learning boot camps can offer a fast and affordable path to a career in computer science. Machine learning boot camps cover the fundamentals of artificial intelligence and data science. This Bootcamp collaborates with large corporations, therefore, Codesmith students will have the opportunity to work in large corporations. Codesmith teaches students full-stack development, front-end development, and JavaScript, emphasizing machine learning.


12 Best Coursera Free Courses for Machine Learning

#artificialintelligence

This is another Free Coursera course to learn how deep learning with neural networks can be used to classify images and detect objects in images and videos. In this course, you will use convolutional neural networks (CNNs) to classify images and detect objects.


Become a Sensor Fusion Engineer

#artificialintelligence

Learn to detect obstacles in lidar point clouds through clustering and segmentation, apply thresholds and filters to radar data in order to accurately track objects, and augment your perception by projecting camera images into three dimensions and fusing these projections with other sensor data. Combine this sensor data with Kalman filters to perceive the world around a vehicle and track objects over time.


Machine Learning for Data Science: Machine Learning Devops

#artificialintelligence

This course empowers the students to be more efficient, effective, and productive in modern, real-world ML projects by adopting best practices around reproducible workflows. In particular, it teaches the fundamentals of MLops and how to: a) create a clean, organized, reproducible, end-to-end machine learning pipeline from scratch using MLflow b) clean and validate the data using pytest c) track experiments, code, and results using GitHub and Weights & Biases d) select the best-performing model for production and e) deploy a model using MLflow. Along the way, it also touches on other technologies like Kubernetes, Kubeflow, and Great Expectations and how they relate to the content of the class.


Become a Machine Learning Engineer

#artificialintelligence

Distribution centers often use robots to move objects as a part of their operations. Objects are carried in bins where each bin can contain multiple objects. In this project, students will have to build a model that can count the number of objects in each bin. A system like this can be used to track inventory and make sure that delivery consignments have the correct number of items. To build this project, students will have to use AWS Sagemaker and good machine learning engineering practices to fetch data from a database, preprocess it and then train a machine learning model.


Best IT Training Institute for Online Courses

#artificialintelligence

It is a subfield of artificial intelligence and is dedicated to the design of an algorithm capable of learning from information. Machine learning has many applications including health informatics, self-driving car, business analytics, and financial forecasting. During Machine Learning Training, you will learn several important topics including the fundamentals of the Machine Learning Course. You will also study the most effective techniques of machine learning during Online Machine Learning. You will also learn about the theory of this course with the practical knowledge in the Machine Learning Online Course.


How to land an ML job: Advice from engineers at Meta, Google Brain, and SAP - KDnuggets

#artificialintelligence

Kaushik is a technical leader at Meta, and has over 10 years of experience building AI-driven products at companies like LinkedIn and Google. Shalvi is an AI scientist at SAP, and has experience as a data scientist, a software engineer, and project manager. Frank is a founding engineer at co:rise and started his career at Coursera, where he was the first engineering hire and built much of the platform's original core infrastructure. The following excerpts from Jake's conversation with Kaushik, Shalvi, and Frank have been edited and condensed for clarity. You can watch the complete recording here. Kaushik, you've been a hiring manager at some big companies. You get a lot of resumes. What are you looking for? What advice do you have for someone who's working on their resume and thinking about how to position themselves? Kaushik: In terms of skills, I'm looking for a practical knowledge of applying ML to build products. That's something I think you can't get from books -- you have to have some hands-on experience. I'm not necessarily looking for someone to have experience with specific tools or techniques, because those things are constantly changing. It's more that I want to know about the approach they took. Why did they use the tools they did, and what did they do when things got tricky or didn't work the first time? Don't get me wrong, I think having a good theoretical foundation is definitely necessary. But I would say you should spend as much time as you can solving real problems. That's how you learn which techniques work best for which use cases, and it will help you get a better understanding of the theoretical side, too. Kaushik: In terms of preparing for interviews, other than brushing up on the fundamentals, my advice would be to brainstorm a couple of problems that are relevant to the company you're interviewing with and do some background research on the common techniques to solve those problems.


How to Start a Career in AI

#artificialintelligence

How do I start a career as a deep learning engineer? What are some of the key tools and frameworks used in AI? How do I learn more about ethics in AI? Everyone has questions, but the most common questions in AI always return to this: how do I get involved? Cutting through the hype to share fundamental principles for building a career in AI, a group of AI professionals gathered at NVIDIA's GTC conference in the spring offered what may be the best place to start. Each panelist, in a conversation with NVIDIA's Louis Stewart, head of strategic initiatives for the developer ecosystem, came to the industry from very different places. But the speakers -- Katie Kallot, NVIDIA's former head of global developer relations and emerging areas; David Ajoku, founder of startup aware.ai;