Collaborating Authors

Learning Management: Instructional Materials

3 Strategies To Redefine Your Executive Career Path With AI


Artificial Intelligence (AI) is disrupting businesses and job roles in every industry, causing concerns about long-term job security for low-skill manual jobs and management roles alike. To prepare for this AI-driven economy, many experienced managers and seasoned executives are turning to MOOCs (Massive Open Online Courses) to upskill in foundational data analytics and AI. This trend is unlikely to slow down anytime soon: The global MOOC market is expected to grow from $3.9 billion in 2018 to $20.8 billion by 2023, a CAGR of 40.1 percent. Business and technology-related courses make up 40 percent of these online courses. Many universities have also joined the drive to fill the AI leadership gap by offering high-touch executive education programs.

Machine Learning for Accounting with Python


This course, Machine Learning for Accounting with Python, introduces machine learning algorithms (models) and their applications in accounting problems. It covers classification, regression, clustering, text analysis, time series analysis. This course provides an entry point for students to be able to apply proper machine learning models on business related datasets with Python to solve various problems. Accounting Data Analytics with Python is a prerequisite for this course. This course is running on the same platform (Jupyter Notebook) as that of the prerequisite course.

Machine Learning and Reinforcement Learning in Finance


This course aims at providing an introductory and broad overview of the field of ML with the focus on applications on Finance. Supervised Machine Learning methods are used in the capstone project to predict bank closures. Simultaneously, while this course can be taken as a separate course, it serves as a preview of topics that are covered in more details in subsequent modules of the specialization Machine Learning and Reinforcement Learning in Finance. The goal of Guided Tour of Machine Learning in Finance is to get a sense of what Machine Learning is, what it is for and in how many different financial problems it can be applied to. The course is designed for three categories of students: Practitioners working at financial institutions such as banks, asset management firms or hedge funds Individuals interested in applications of ML for personal day trading Current full-time students pursuing a degree in Finance, Statistics, Computer Science, Mathematics, Physics, Engineering or other related disciplines who want to learn about practical applications of ML in Finance Experience with Python (including numpy, pandas, and IPython/Jupyter notebooks), linear algebra, basic probability theory and basic calculus is necessary to complete assignments in this course.

Developing AI Applications on Azure


This course introduces the concepts of Artificial Intelligence and Machine learning. We'll discuss machine learning types and tasks, and machine learning algorithms. You'll explore Python as a popular programming language for machine learning solutions, including using some scientific ecosystem packages which will help you implement machine learning. Next, this course introduces the machine learning tools available in Microsoft Azure. We'll review standardized approaches to data analytics and you'll receive specific guidance on Microsoft's Team Data Science Approach.



In today's technologically driven world, data is the most valuable resource. Data is vital to any company's success because it allows for better and faster decision-making. Data science combines different algorithms, tools, and machine learning principles. This is where hidden patterns are found in raw data. As the data generated and analyzed continues to increase at an exponential rate, data analytics will be in high demand. Data science careers are promising.

Python and Machine Learning for Asset Management


This course will enable you mastering machine-learning approaches in the area of investment management. It has been designed by two thought leaders in their field, Lionel Martellini from EDHEC-Risk Institute and John Mulvey from Princeton University. Starting from the basics, they will help you build practical skills to understand data science so you can make the best portfolio decisions. The course will start with an introduction to the fundamentals of machine learning, followed by an in-depth discussion of the application of these techniques to portfolio management decisions, including the design of more robust factor models, the construction of portfolios with improved diversification benefits, and the implementation of more efficient risk management models. We have designed a 3-step learning process: first, we will introduce a meaningful investment problem and see how this problem can be addressed using statistical techniques.

Create Machine Learning Models in Microsoft Azure


Machine learning is the foundation for predictive modeling and artificial intelligence. If you want to learn about both the underlying concepts and how to get into building models with the most common machine learning tools this path is for you. In this course, you will learn the core principles of machine learning and how to use common tools and frameworks to train, evaluate, and use machine learning models. This course is designed to prepare you for roles that include planning and creating a suitable working environment for data science workloads on Azure. You will learn how to run data experiments and train predictive models. In addition, you will manage, optimize, and deploy machine learning models into production.

Advanced Data Science with IBM


Apache Spark is the de-facto standard for large scale data processing. This is the first course of a series of courses towards the IBM Advanced Data Science Specialization. We strongly believe that is is crucial for success to start learning a scalable data science platform since memory and CPU constraints are to most limiting factors when it comes to building advanced machine learning models. In this course we teach you the fundamentals of Apache Spark using python and pyspark. We'll introduce Apache Spark in the first two weeks and learn how to apply it to compute basic exploratory and data pre-processing tasks in the last two weeks.

IIT Roorkee Offers 5-Month Online Course on Data Science & Machine Learning


The Indian Institute of Technology (IIT), Roorkee is offering a five-month online course on data science and machine learning (ML). The course is conducted by Imarticus Learning in association with iHUB DivyaSampark to enable candidates to leverage data Science and ML for effective decision-making. Prof Sudeb Dasgupta, project director of iHUB DivyaSampark said in a press release, "We bring iHUB DivyaSampark's expertise in building outstanding programs with IITs and Imarticus' technical expertise to deliver an outstanding learning experience through a holistic approach. Together, we envision creating a skilled workforce for innovation and digital growth." For more information, go through the brochure.