Collaborating Authors


Rep's bill would allow STEM ed to branch out

Boston Herald

Sometimes, vocations and avocations need a champion, and students in Massachusetts looking to further their knowledge of science, technology and robotics have one in state Rep. Danillo Sena. A House member representing the 37th Middlesex District, Sena filed a bill on Feb. 4 titled "An Act establishing an elementary and secondary school robotics grant program," meant to create a grant program that provides public and charter schools the necessary funding to increase robotics and STEM participation during and after school. STEM stands for science, technology, engineering and mathematics, a branch of education designed to help students to become better problem-solvers. "Money should not be a barrier between students and access to fun and engaging STEM education programs that foster creativity and have lasting positive effects on student achievement like these robotics teams," the Acton Democrat stated in a release. The bill was created in collaboration with Olivia Oestreicher, a member of Team 4905 Andromeda One Robotics at Ayer Shirley Regional High School and a Rep. Sena intern.

Massachusetts Commissioner of Education: At some point remote, hybrid learning needs to be 'off the table'

Boston Herald

With health metrics improving and mitigation measures in place across Massachusetts schools, Elementary and Secondary Commissioner Jeff Riley said Tuesday it's time to begin the process of getting more students back into classrooms. Riley, who is set to join Gov. Charlie Baker and Education Secretary James Peyser for a 2 p.m. press conference on education and COVID-19, told Board of Elementary and Secondary Education members that he plans to ask them in March to give him the authority to determine when hybrid and remote school models no longer count for learning hours, as part of a broader plan to return more students to physical school buildings. Riley said he would take a "phased approach to returning students into the classrooms, working closely with state health officials and medical experts." He said his plan would focus on elementary school students first, with the initial goal of having them learning in-person five days a week this April. "At some point, as health metrics continue to improve, we will need to take the remote and hybrid learning models off the table and return to a traditional school format," Riley said.

Personalized Multimodal Feedback Generation in Education Artificial Intelligence

The automatic evaluation for school assignments is an important application of AI in the education field. In this work, we focus on the task of personalized multimodal feedback generation, which aims to generate personalized feedback for various teachers to evaluate students' assignments involving multimodal inputs such as images, audios, and texts. This task involves the representation and fusion of multimodal information and natural language generation, which presents the challenges from three aspects: 1) how to encode and integrate multimodal inputs; 2) how to generate feedback specific to each modality; and 3) how to realize personalized feedback generation. In this paper, we propose a novel Personalized Multimodal Feedback Generation Network (PMFGN) armed with a modality gate mechanism and a personalized bias mechanism to address these challenges. The extensive experiments on real-world K-12 education data show that our model significantly outperforms several baselines by generating more accurate and diverse feedback. In addition, detailed ablation experiments are conducted to deepen our understanding of the proposed framework.

Massachusetts families struggle with remote and hybrid learning decisions amid COVID fears

Boston Herald

Students and parents across the state said they struggled with remote learning, but are fearful to return to school buildings amid the coronavirus pandemic, placing the stress of uncertainty upon families as fall approaches. "I think it is cruel and mean to think that students should be in a room at their seat without any physical touch for hours," said Jay'dha Rackard, 12, who attends Helen Davis Leadership Academy. Her mother, Janina Rackard, said she decided to keep her daughter home for remote learning this school year, "I feel like our children are being treated like Petri dishes." School shutdowns and remote learning models from the spring took a toll on students and parents, families said during a Thursday virtual press conference hosted by the Massachusetts Education Justice Alliance. "Remote learning probably came at the worst possible time in my life," said Chelsea High School senior Victoria Stutto. She said her father died shortly after school was shut down.

Massachusetts not tracking coronavirus outbreaks in schools even as health officials say they're 'inevitable'

Boston Herald

The state said it has no formal reporting process for tracking coronavirus outbreaks that have already cropped up in summer school programs, leaving teachers unions wondering how health officials plan to prevent outbreaks considered "inevitable" in the fall. "We are not formally tracking them, but we are trying to notice them as they pop up," said Department of Elementary and Secondary Education spokeswoman Jacqueline Reis. "There is no formal reporting process for schools." Reis said the DESE is still finalizing its guidance as schools shore up their plans for remote, in-person or hybrid learning once classes resume in September. "It's absurd and it's stunning but its also not a surprise," said Merrie Najimy, who leads the Massachusetts Teachers Association.

Lizard man


For Jonathan Losos, tiny Caribbean islands and their reptile inhabitants are test tubes of evolution. The morning of 17 October 1996 started as usual for Jonathan Losos. The evolutionary biologist donned a broad hat and slathered on sunscreen, then headed by boat to several unnamed islets off Great Exuma Island in the Bahamas. Three years earlier, he and ecologist David Spiller had introduced local lizard species there to learn how they would compete in a once lizardless place. The pair spent the day snaring lizards, noting their exact locations, and taking stock of the insects, spiders, and vegetation. They were worried about reports of an impending hurricane, but the locals seemed confident it would veer off and spare the islands, as usual. Not this time, however. The next day, Losos and Spiller helped their hotel owner board up the windows of their beachfront cottage on Great Exuma as Hurricane Lili bore down on the island. As the wind picked up and the first squalls dumped rain, they scurried to a cinder block building up a hill. That night, the wind blew off parts of the roof and felled palm trees. A 4-meter storm surge flooded the streets, and 2 days later they found their rented motorboat stuck in a tree. The lizards had it even worse. When Losos and Spiller finally made it back out to their most exposed study sites, the islands were stripped nearly bare of brush and all the lizards were gone. But the setback for Losos's project was the start of a new chapter in his research on how the animals adapt to the varied, changeable environments on islands in and around the Caribbean. Since Lili, a half-dozen other hurricanes have inundated islets and swept away animals relocated there by Losos, who is based at Washington University in St. Louis (WashU), and his team. But he and his colleagues have persevered, collecting data on how the animals adapt to predators, storm damage, and other challenges—natural and those contrived by the researchers. A lifelong reptile enthusiast, Losos is driven in part by his passion for a group of lizards called anoles, which thrive in South and Central America and throughout the Caribbean. He also views them as an opportunity. Almost half of the 400 anole species live on islands, and their diverse lifestyles, habitats, and histories have proved to be a vehicle for exploring some of evolution's biggest questions. “Jonathan's islands are like giant test tubes, and he is the ultimate tinkerer,” says Martha Muñoz, an evolutionary biologist at Yale University. Losos's research on anoles has shown that evolution can happen faster than most scientists had assumed, and that—contrary to what some leading thinkers have proposed—it is often predictable. Faced with similar challenges, separate populations often evolve similar solutions. Along the way, Losos has mentored dozens of young scientists, and some are now carrying his work in new directions. “Beyond his many contributions to the field, Jonathan has also changed the course of science simply by being who he is,” Muñoz, a former student, says. “He is proof that success is richer and more rewarding when accompanied by kindness and humility.” ODDLY ENOUGH, THE 1950S TV show Leave it to Beaver started Losos down this path. When 7-year-old Beaver brought home a pet alligator, young Losos asked his parents whether he, too, could get one. His mom was against it, but his father said he would ask a family friend, the deputy director of the St. Louis Zoo, for advice. A successful businessman, the senior Losos also loved animals, taking his family on nature vacations, joining the zoo's board, and even financing the zoo's acquisition of a baby elephant from Thailand, which he named Carolyn in honor of his wife. To everyone's surprise, the director heartily approved, saying that having an alligator as a childhood pet was how he got his start in herpetology. So the junior Losos acquired several baby caimans, which lived in a baby pool in the basement in winter and in a horse trough in the yard the rest of the year. Only a few times did the animals escape and terrorize the neighbors. Losos worked summers at the zoo until partway through college, eventually donating his caimans to a zookeeper. “Jonathan started off as a little kid loving nature, endlessly pestering staff at his local zoo, catching lizards on family vacations, and he's never lost that spark,” says Harry Greene, herpetologist emeritus at Cornell University and Losos's graduate school adviser. As an undergraduate at Harvard University, Losos fell under the tutelage of herpetologist Ernest Williams. Sometimes referred to as the father of anole biology, Williams had recognized that anoles on different Caribbean islands evolved independently. Yet on each island he'd found a similar set of body types or “ecomorphs”—one specialized for living in the brush, another for gripping twigs, and still others for life high in the trees. These parallels suggested that where circumstances were similar, evolution would converge on the same set of traits and form communities with similar sets of species. Williams's lab had already produced several leading evolutionary biologists, and Losos figured the field of anole research was getting too crowded. But no other species both captured his interest and was easy to study. “I went through a dozen failed Ph.D. projects,” he recalls. At a low point, he seriously considered law school, but his dad convinced him that the world needed herpetologists more than lawyers. Losos eventually realized that anoles were perfect for applying new tools in evolutionary biology. Researchers were just beginning to build family trees and trace evolution based on protein variations among species. For his Ph.D., Losos compared proteins in Caribbean anoles and verified that Williams's ecomorphs had indeed evolved independently to form similar communities on different islands ( Science , 27 March 1998, p. [2115][1]). That insight alone—support for an idea called convergent evolution—“was a really important breakthrough,” says Frank Burbrink, a herpetologist at the American Museum of Natural History. Meanwhile, other researchers were calling for more rigor in evolution studies by requiring evidence that supposedly adaptive traits really give an organism an advantage. So Losos began to study different anole ecomorphs, with legs and toepads of varying sizes (see graphic, p. 499). In the lab, he ran them down miniature racetracks and assessed how well they clung to smooth, vertical surfaces. He found that lizards living near the ground, close to predators, had longer legs that made them fast, whereas those living higher in brush and trees had bigger toepads to stick to leaves and smooth bark. By combining these data with his family tree studies, he got a clearer sense of the lizards' evolutionary history. He “was really one of the first people to move the field into doing evolution by integrating ecology and morphology and getting the bigger picture,” Burbrink says. Inspired by experiments in which researchers monitored evolutionary changes in guppies in Trinidad after relocating them to different streams ( Science , 24 August 2012, p. [904][2]), Losos began to wonder whether similar studies could be done in Caribbean anoles. And he realized that Thomas Schoener, one of Williams's protégés, had already laid the groundwork. In the 1980s, Thomas and Amy Schoener (they were once married) introduced local lizards to tiny lizardless islands in the Bahamas to investigate how different vegetation affected the reptiles' ability to thrive. A decade later, Losos teamed up with Thomas Schoener, by then a renowned ecologist at the University of California (UC), Davis, to revisit those sites. Consistent with Williams's and Losos's earlier findings, lizards living in scrubby vegetation had shorter legs and larger toepads than their ancestors, which had lived in tall, broad trees. These adaptations enabled them to cling to tiny twigs as they chased down insects to eat, and the changes had taken just a few generations. “Evolution can happen very quickly when natural selection is very strong,” Losos says. The idea is now well-accepted, but at the time it went against the entrenched belief that evolution was a slow process. “This is one of the few things that [Charles] Darwin got wrong,” Losos says. He decided to make anoles his life's work. HE SOON HAD TO RECKON with hurricanes. Losos and Spiller, now retired from UC Davis, had chosen the islets off Great Exuma to study the effects of competition. On some, they introduced two local species, the green and brown anoles, and on others, just a single species. In the first 3 years, they noticed that on islands with both kinds, the brown lizards were driving the green anoles higher into the bushes, where they were struggling. That's when Lili hit, ruining the experiment before they could see whether the green anoles would go extinct. “It would have been so easy, I'm sure, to pack it all in and give up,” says Luke Harmon, one of Losos's former students and now an evolutionary biologist at the University of Idaho. Instead, Losos and Spiller used the disaster to their advantage. They documented Lili's great, but also patchy, impact. Islands southwest of Great Exuma felt the brunt of the storm surge and were devoid of lizards and vegetation. Life there would have to start over. On islands to the north, the wind and rain snapped twigs and ripped off leaves but a few lizards remained, they reported in the first of several papers about hurricanes ( Science , 31 July 1998, p. [695][3]). The work challenged a widespread assumption that extreme events such as hurricanes do not drive evolution because they are rare and have random, unpredictable impacts on plants and animals. The Losos group discovered instead that storms can be agents of natural selection. For example, in 2017 Losos's postdoc Colin Donihue; functional morphologist Anthony Herrel, now with the French national research agency CNRS at the National Museum of Natural History; and colleagues visited two cays in the Turks and Caicos to measure the body proportions of the anoles living there. Four days after they left, two almost back-to-back hurricanes hit the area with winds of more than 200 kilometers per hour. When the team returned a few weeks later and remeasured the lizards, they found that the survivors tended to have bigger toepads, longer forelimbs, and shorter hindlimbs. Back in the lab, the researchers tested how these traits affect the lizards' ability to hold onto a perch. In a strong wind, anoles hang on with their forelimbs, but they lose their grip with the hind legs. Cranking up an air-blower, the researchers found that those with longer hind legs (and more surface area for the wind to catch) got blown off their perches onto a padded surface more readily. Conversely, animals with shorter hind limbs and bigger toepads hung on. The hurricanes had apparently selected for those traits, the team reported in 2018. The following year, they found that offspring of the survivors also had big toepads, suggesting the adaptation was genetic and not just a reaction to holding on tight. The team has since measured toepad size in 188 lizard species across the Caribbean. The more hurricanes an island has experienced, the bigger the toepads of the lizards living there, they reported on 27 April in the Proceedings of the National Academy of Sciences . Hurricanes seem to have had a long-term evolutionary effect. LOSOS HAD BEEN A PROFESSOR at WashU for 13 years when Harvard came calling in 2005, seeking to recruit him to its evolutionary biology department. A St. Louis native and a hardcore St. Louis Cardinals baseball fan, he hesitated. He even did a yearlong sabbatical at Harvard before finally accepting, in large part because the position included a curatorship at the Harvard Museum of Comparative Zoology. “That was the one thing St. Louis didn't have,” he recalls. There, he continued to build on a reputation for being a kind, enthusiastic mentor. “I have seen him give high school students the same attention and respect that he gives his closest colleagues,” says Melissa Kemp, a former postdoc now at the University of Texas, Austin. “He seems to always be focused on his work, but he also has a whimsical sense of fun at the same time,” says Michele Johnson, a former student and an evolutionary biologist at Trinity University. Losos sports a watch with an anole he photographed as its face and is not above lecturing undergraduates while dressed as a platypus—one of his favorite animals since childhood. Those traits and a firm belief that “there is no one-size-fits-all in terms of how to interact with and mentor students” have helped Losos launch the careers of 59 graduate students and postdocs. They include at least eight Black, Latino, and Native American scholars, in a field that lacks diversity. (Although 3% of U.S. biologists are African American or Black, for example, only 0.3% of evolutionary biologists are.) Ambika Kamath, now a postdoctoral researcher at UC Berkeley, says Losos backed her completely when her studies challenged the long-held idea that male lizards hold territories to corral their mates. She argued instead that females move around and play a role in mate choice. “It would have been much harder for me to do that work without his excitement,” she recalls. Losos worked hard with her to get the paper just right and was eager to be a co-author. “Otherwise it would have just been the work of this young brown woman who could have easily been dismissed as an angry feminist.” Kamath and other students praise Losos for pushing them intellectually without undermining their confidence. Harmon jokes that Losos would never dismiss an idea from his students, no matter how wacky. Instead, he would just pause and say “interesting.” “Eventually I figured out that maybe I should think things through a bit more, if Jonathan thought they were ‘interesting,’” Harmon says. LOSOS AND HIS TEAM keep testing their ideas about ecology and evolution on Caribbean islands. In one recent project, Robert Pringle, now at Princeton University, and Losos tested a key principle in ecology—that introducing a top predator tends to increase biodiversity. The researchers added a predatory ground-dwelling lizard to islands with brown and green anoles. To escape this new threat, the brown anoles began to hang out higher in the foliage, displacing the green anoles that normally lived there and driving them toward extinction. Contrary to conventional wisdom, the predator appeared to be pushing the islands toward lower biodiversity, they reported on 5 June in Nature . Another recent study, led by one of Losos's former postdocs, examined the impacts of an invasive anole species on Dominica. Until 20 years ago, the island was home to a single anole species. Then a lumber shipment introduced a second species that is gradually spreading. To study how the native and invader species interact, behavioral ecologist Claire Dufour, now at the University of Montpellier, used robotic lizards as stand-ins for the invader. The robots did pushups and extended a flap of fake skin under the chin, mimicking the aggressive displays of real lizards. In response, native lizards familiar with the invaders postured more aggressively, suggesting the invaders are forcing the natives to expend more energy defending their territory, the group reported on 27 March in the Journal of Animal Ecology . “Our biggest conclusion is that the species do compete and have negative consequences on each other,” Losos says. ![Figure][4] Evolution's stamp on island-dwelling lizards On islands in and around the Caribbean, 173 species of anole lizards face an array of different environments, predators, and competitors, along with periodic storms. The result is a laboratory of evolution, where scientists have been able to track the speed and course of adaptation. GRAPHIC: V. ALTOUNIAN/ SCIENCE Even as his group continues to churn out papers, Losos is assessing what he has learned so far. In his book Improbable Destinies: Fate, Chance, and the Future of Evolution , published in 2017, he challenged a major contention of one of the field's great thinkers, Stephen Jay Gould, the Harvard paleontologist who argued that chance plays such a big role in determining nature's course that evolution would never take the same path twice. Anoles offer evidence to the contrary, Losos wrote: In similar habitats, they have repeatedly evolved similar body shapes, sizes, and behavior. The book was written for the general public, but it made an impression even on his peers. “I've been studying evolution for 30-plus years, and this book made me rethink some things I thought I knew about biology and evolution,” says Christopher Austin, an evolutionary biologist and herpetology curator at the Louisiana State University Museum of Natural Science. Losos left Harvard in 2018, lured by a new job at WashU and the prospect of returning to his hometown, his cats, and his wife, who has a successful real estate career and did not follow him to Massachusetts. He now heads the Living Earth Collaborative, a biodiversity research initiative that unites experts at the Missouri Botanical Garden, the St. Louis Zoo, and WashU. He is working on a book about evolution in the house cat, another of his favorite species. And he is still dodging hurricanes. Losos and colleagues have been trying to assess the long-term evolutionary impacts of predatory lizards they've introduced to some islands in the Bahamas. “I don't know if we will ever get there,” he says. Every few years a hurricane comes through and blows the evolving lizards away. [1]: [2]: [3]: [4]: pending:yes

Bringing artificial intelligence and MIT to middle school classrooms


In the age of Alexa, YouTube recommendations, and Spotify playlists, artificial intelligence has become a way of life, improving marketing and advertising, e-commerce, and more. But what are the ethical implications of technology that collects and learns personal information? How should society navigate these issues and shape the future? A new curriculum designed for middle school students aims to help them understand just that at an early age, as they grow up surrounded by the technology. The open-source educational material, designed by an MIT team and piloted at this year's Massachusetts STEM Week this past fall, teaches students how AI systems are designed, how they can be used to influence the public -- and also how to use them to be successful in jobs of the future.

Parkland Is Embracing Student Surveillance

The Atlantic - Technology

In the 11 months since 17 teachers and students were killed at Marjory Stoneman Douglas High School in Parkland, Florida, campuses across the country have started spending big on surveillance technology. The Lockport, New York, school district spent $1.4 million in state funds on a facial-recognition system. Schools in Michigan, Massachusetts, and Los Angeles have adopted artificial-intelligence software--prone to false positives--that scans students' Facebook and Twitter accounts for signs that they might become a shooter. In New Mexico, students as young as 6 are under acoustic surveillance, thanks to a gunshot-detection program originally developed for use by the military to track enemy snipers. Earlier this month, the Marjory Stoneman Douglas High School Public Safety Commission released its report on the safety and security failures that contributed to fatalities during last year's shooting.

Think Computers Can Replace Humans as Test Graders? Think Again.

AITopics Original Links

If a robot was grading this article as if it were an essay on the SAT, the perfect opening line would go a little something like this: Computerized robotic technology has been shown to be a highly efficient device to grade standardized examinations, however, when put to the test the mechanized system is easy to thwart. That's according to The New York Times, who challenged recent findings that claimed there was little difference between human and robot graders. The Times had Les Perelman, a director of writing at the Massachusetts Institute of Technology and opponent of electronic grading, kick the tires on Education Testing Service's e-Rater, which the service says it uses in conjunction with human essay readers. Among other faults, Perelman found the e-Rater is not capable of telling truth from fiction, so there is little incentive for test takers to get their facts straight. He got the highest possible score.)

Tech's Favorite School Faces Its Biggest Test: the Real World


On lengths of yarn stretched between chairs, sixth-grade math students were placing small yellow squares of paper, making number lines--including everything from fractions to negative decimals--in a classroom at Walsh Middle School. Their teacher, Michele O'Connor, had assigned the number lines in previous years, but this year was different. She, personally, hadn't spent much time leading students through practice problems or introducing the basic math concepts they would use in the project. That had largely been relegated to online math lessons, part of separate periods of learning time when students were free to work through computer-based lessons in any subject they chose, at their own pace. The change at Walsh, located in Framingham, Massachusetts, is part of a nationwide pilot program, one that could indicate just how deeply and how quickly the personalized-learning trend will penetrate the average classroom. Indeed, despite the buzz around personalized learning, there's no simple recipe for success, and the common ingredients -- such as adaptive-learning technology and student control over learning -- can backfire if poorly implemented.