Goto

Collaborating Authors

Results


An Extensible and Personalizable Multi-Modal Trip Planner

arXiv.org Artificial Intelligence

Despite a tremendous amount of work in the literature and in the commercial sectors, current approaches to multi-modal trip planning still fail to consistently generate plans that users deem optimal in practice. We believe that this is due to the fact that current planners fail to capture the true preferences of users, e.g., their preferences depend on aspects that are not modeled. An example of this could be a preference not to walk through an unsafe area at night. We present a novel multi-modal trip planner that allows users to upload auxiliary geographic data (e.g., crime rates) and to specify temporal constraints and preferences over these data in combination with typical metrics such as time and cost. Concretely, our planner supports the modes walking, biking, driving, public transit, and taxi, uses linear temporal logic to capture temporal constraints, and preferential cost functions to represent preferences. We show by examples that this allows the expression of very interesting preferences and constraints that, naturally, lead to quite diverse optimal plans.


Acceptable Planning: Influencing Individual Behavior to Reduce Transportation Energy Expenditure of a City

arXiv.org Artificial Intelligence

Palo Alto Research Center, Mail Stop: 3333 Coyote Hill Road, Palo Alto, CA 94034 USA Abstract Our research aims at developing intelligent systems to reduce the transportation-related energy expenditure of a large city by influencing individual behavior. We introduce Copter - an intelligent travel assistant that evaluates multi-modal travel alternatives to find a plan that is acceptable to a person given their context and preferences. We propose a formulation for acceptable planning that brings together ideas from AI, machine learning, and economics. This formulation has been incorporated in Copter that produces acceptable plans in real-time. We adopt a novel empirical evaluation framework that combines human decision data with a high fidelity multi-modal transportation simulation to demonstrate a 4% energy reduction and 20% delay reduction in a realistic deployment scenario in Los Angeles, California, USA. 1. Introduction Transportation is one of the largest consumers of energy in the ...


Acceptable Planning: Influencing Individual Behavior to Reduce Transportation Energy Expenditure of a City

Journal of Artificial Intelligence Research

Our research aims at developing intelligent systems to reduce the transportation-related energy expenditure of a large city by influencing individual behavior. We introduce Copter - an intelligent travel assistant that evaluates multi-modal travel alternatives to find a plan that is acceptable to a person given their context and preferences. We propose a formulation for acceptable planning that brings together ideas from AI, machine learning, and economics. This formulation has been incorporated in Copter that produces acceptable plans in real-time. We adopt a novel empirical evaluation framework that combines human decision data with a high fidelity multi-modal transportation simulation to demonstrate a 4% energy reduction and 20% delay reduction in a realistic deployment scenario in Los Angeles, California, USA.   This article is part of the special track on AI and Society.


An Extensible and Personalizable Multi-Modal Trip Planner

AAAI Conferences

Despite a tremendous amount of work in the literature and in the commercial sectors, current approaches to multi-modal trip planning still fail to consistently generate plans that users deem optimal in practice. We believe that this is due to the fact that current planners fail to capture the true preferences of users, e.g., their preferences depend on aspects that are not modeled. An example of this could be a preference not to walk through an unsafe area at night. We present a novel multi-modal trip planner that allows users to up- load auxiliary geographic data (e.g., crime rates) and to specify temporal constraints and preferences over these data in combination with typical metrics such as time and cost. Concretely, our planner supports the modes walking, biking, driving, public transit, and taxi, uses linear temporal logic to capture temporal constraints, and preferential cost functions to represent preferences. We show by examples that this allows the expression of very interesting preferences and constraints that, naturally, lead to quite diverse optimal plans.


Distributed Constraint Optimization Problems and Applications: A Survey

Journal of Artificial Intelligence Research

The field of multi-agent system (MAS) is an active area of research within artificial intelligence, with an increasingly important impact in industrial and other real-world applications. In a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as a prominent agent model to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have been proposed to enable support of MAS in complex, real-time, and uncertain environments. This survey provides an overview of the DCOP model, offering a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.


Distributed Constraint Optimization Problems and Applications: A Survey

arXiv.org Artificial Intelligence

The field of Multi-Agent System (MAS) is an active area of research within Artificial Intelligence, with an increasingly important impact in industrial and other real-world applications. Within a MAS, autonomous agents interact to pursue personal interests and/or to achieve common objectives. Distributed Constraint Optimization Problems (DCOPs) have emerged as one of the prominent agent architectures to govern the agents' autonomous behavior, where both algorithms and communication models are driven by the structure of the specific problem. During the last decade, several extensions to the DCOP model have enabled them to support MAS in complex, real-time, and uncertain environments. This survey aims at providing an overview of the DCOP model, giving a classification of its multiple extensions and addressing both resolution methods and applications that find a natural mapping within each class of DCOPs. The proposed classification suggests several future perspectives for DCOP extensions, and identifies challenges in the design of efficient resolution algorithms, possibly through the adaptation of strategies from different areas.


United Airlines cockpit access codes leaked online

The Independent - Tech

The passcodes securing cockpit doors on United Airlines aircraft may have been leaked to the public. Over the weekend, United Airlines owner United Continental Holdings informed staff that passcodes and safety information had been posted online by a flight attendant. According to the company, it was a mistake rather than the result of a cyber security breach. The I.F.O. is fuelled by eight electric engines, which is able to push the flying object to an estimated top speed of about 120mph. The giant human-like robot bears a striking resemblance to the military robots starring in the movie'Avatar' and is claimed as a world first by its creators from a South Korean robotic company Waseda University's saxophonist robot WAS-5, developed by professor Atsuo Takanishi and Kaptain Rock playing one string light saber guitar perform jam session A man looks at an exhibit entitled'Mimus' a giant industrial robot which has been reprogrammed to interact with humans during a photocall at the new Design Museum in South Kensington, London Electrification Guru Dr. Wolfgang Ziebart talks about the electric Jaguar I-PACE concept SUV before it was unveiled before the Los Angeles Auto Show in Los Angeles, California, U.S The Jaguar I-PACE Concept car is the start of a new era for Jaguar.


United Airlines incident video could have broken flight provider's rules, but not the law

The Independent - Tech

A video of a passenger forcibly ejected from a United Airlines flight has been condemned across the world. It shows a man being dragged off a plane, sustaining injuries as in the process, apparently because the airline wanted to make space for it own passengers. But some have chosen instead to focus on filming of the video itself -- even claiming that the people who should actually be punished are the people that recorded it. The I.F.O. is fuelled by eight electric engines, which is able to push the flying object to an estimated top speed of about 120mph. The giant human-like robot bears a striking resemblance to the military robots starring in the movie'Avatar' and is claimed as a world first by its creators from a South Korean robotic company Waseda University's saxophonist robot WAS-5, developed by professor Atsuo Takanishi and Kaptain Rock playing one string light saber guitar perform jam session A man looks at an exhibit entitled'Mimus' a giant industrial robot which has been reprogrammed to interact with humans during a photocall at the new Design Museum in South Kensington, London Electrification Guru Dr. Wolfgang Ziebart talks about the electric Jaguar I-PACE concept SUV before it was unveiled before the Los Angeles Auto Show in Los Angeles, California, U.S The Jaguar I-PACE Concept car is the start of a new era for Jaguar.


Improving Traffic Prediction with Tweet Semantics

AAAI Conferences

Road traffic prediction is a critical component in modern smart transportation systems. It provides the basis for traffic management agencies to generate proactive traffic operation strategies for alleviating congestion. Existing work on near-term traffic prediction (forecasting horizons in the range of 5 minutes to 1 hour) relies on the past and current traffic conditions. However, once the forecasting horizon is beyond 1 hour, i.e., in longer-term traffic prediction, these techniques do not work well since additional factors other than the past and current traffic conditions start to play important roles. To address this problem, in this paper, for the first time, we examine whether it is possible to use the rich information in online social media to improve longer-term traffic prediction. To this end, we first analyze the correlation between traffic volume and tweet counts with various granularities. Then we propose an optimization framework to extract traffic indicators based on tweet semantics using a transformation matrix, and incorporate them into traffic prediction via linear regression. Experimental results using traffic and Twitter data originated from the San Francisco Bay area of California demonstrate the effectiveness of our proposed framework.