Results


From partners to populations: A hierarchical Bayesian account of coordination and convention

arXiv.org Artificial Intelligence

Languages are powerful solutions to coordination problems: they provide stable, shared expectations about how the words we say correspond to the beliefs and intentions in our heads. Yet language use in a variable and non-stationary social environment requires linguistic representations to be flexible: old words acquire new ad hoc or partner-specific meanings on the fly. In this paper, we introduce a hierarchical Bayesian theory of convention formation that aims to reconcile the long-standing tension between these two basic observations. More specifically, we argue that the central computational problem of communication is not simply transmission, as in classical formulations, but learning and adaptation over multiple timescales. Under our account, rapid learning within dyadic interactions allows for coordination on partner-specific common ground, while social conventions are stable priors that have been abstracted away from interactions with multiple partners. We present new empirical data alongside simulations showing how our model provides a cognitive foundation for explaining several phenomena that have posed a challenge for previous accounts: (1) the convergence to more efficient referring expressions across repeated interaction with the same partner, (2) the gradual transfer of partner-specific common ground to novel partners, and (3) the influence of communicative context on which conventions eventually form.


A Study of Automatic Metrics for the Evaluation of Natural Language Explanations

arXiv.org Artificial Intelligence

As transparency becomes key for robotics and AI, it will be necessary to evaluate the methods through which transparency is provided, including automatically generated natural language (NL) explanations. Here, we explore parallels between the generation of such explanations and the much-studied field of evaluation of Natural Language Generation (NLG). Specifically, we investigate which of the NLG evaluation measures map well to explanations. We present the ExBAN corpus: a crowd-sourced corpus of NL explanations for Bayesian Networks. We run correlations comparing human subjective ratings with NLG automatic measures. We find that embedding-based automatic NLG evaluation methods, such as BERTScore and BLEURT, have a higher correlation with human ratings, compared to word-overlap metrics, such as BLEU and ROUGE. This work has implications for Explainable AI and transparent robotic and autonomous systems.


Bayesian Algorithms for Decentralized Stochastic Bandits

arXiv.org Machine Learning

We study a decentralized cooperative multi-agent multi-armed bandit problem with $K$ arms and $N$ agents connected over a network. In our model, each arm's reward distribution is same for all agents, and rewards are drawn independently across agents and over time steps. In each round, agents choose an arm to play and subsequently send a message to their neighbors. The goal is to minimize cumulative regret averaged over the entire network. We propose a decentralized Bayesian multi-armed bandit framework that extends single-agent Bayesian bandit algorithms to the decentralized setting. Specifically, we study an information assimilation algorithm that can be combined with existing Bayesian algorithms, and using this, we propose a decentralized Thompson Sampling algorithm and decentralized Bayes-UCB algorithm. We analyze the decentralized Thompson Sampling algorithm under Bernoulli rewards and establish a problem-dependent upper bound on the cumulative regret. We show that regret incurred scales logarithmically over the time horizon with constants that match those of an optimal centralized agent with access to all observations across the network. Our analysis also characterizes the cumulative regret in terms of the network structure. Through extensive numerical studies, we show that our extensions of Thompson Sampling and Bayes-UCB incur lesser cumulative regret than the state-of-art algorithms inspired by the Upper Confidence Bound algorithm. We implement our proposed decentralized Thompson Sampling under gossip protocol, and over time-varying networks, where each communication link has a fixed probability of failure.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.


Using Social Network Information in Bayesian Truth Discovery

arXiv.org Machine Learning

We investigate the problem of truth discovery based on opinions from multiple agents who may be unreliable or biased. We consider the case where agents' reliabilities or biases are correlated if they belong to the same community, which defines a group of agents with similar opinions regarding a particular event. An agent can belong to different communities for different events, and these communities are unknown \emph{a priori}. We incorporate knowledge of the agents' social network in our truth discovery framework and develop Laplace variational inference methods to estimate agents' reliabilities, communities, and the event states. We also develop a stochastic variational inference method to scale our model to large social networks. Simulations and experiments on real data suggest that when observations are sparse, our proposed methods perform better than several other inference methods, including majority voting, the popular Bayesian Classifier Combination (BCC) method, and the Community BCC method.



"I can assure you [$\ldots$] that it's going to be all right" -- A definition, case for, and survey of algorithmic assurances in human-autonomy trust relationships

arXiv.org Machine Learning

As technology become more advanced, those who design, use and are otherwise affected by it want to know that it will perform correctly, and understand why it does what it does, and how to use it appropriately. In essence they want to be able to trust the systems that are being designed. In this survey we present assurances that are the method by which users can understand how to trust this technology. Trust between humans and autonomy is reviewed, and the implications for the design of assurances are highlighted. A survey of research that has been performed with respect to assurances is presented, and several key ideas are extracted in order to refine the definition of assurances. Several directions for future research are identified and discussed.


Distributed Learning for Cooperative Inference

arXiv.org Machine Learning

We study the problem of cooperative inference where a group of agents interact over a network and seek to estimate a joint parameter that best explains a set of observations. Agents do not know the network topology or the observations of other agents. We explore a variational interpretation of the Bayesian posterior density, and its relation to the stochastic mirror descent algorithm, to propose a new distributed learning algorithm. We show that, under appropriate assumptions, the beliefs generated by the proposed algorithm concentrate around the true parameter exponentially fast. We provide explicit non-asymptotic bounds for the convergence rate. Moreover, we develop explicit and computationally efficient algorithms for observation models belonging to exponential families.


A Survey of Available Corpora for Building Data-Driven Dialogue Systems

arXiv.org Artificial Intelligence

During the past decade, several areas of speech and language understanding have witnessed substantial breakthroughs from the use of data-driven models. In the area of dialogue systems, the trend is less obvious, and most practical systems are still built through significant engineering and expert knowledge. Nevertheless, several recent results suggest that data-driven approaches are feasible and quite promising. To facilitate research in this area, we have carried out a wide survey of publicly available datasets suitable for data-driven learning of dialogue systems. We discuss important characteristics of these datasets, how they can be used to learn diverse dialogue strategies, and their other potential uses. We also examine methods for transfer learning between datasets and the use of external knowledge. Finally, we discuss appropriate choice of evaluation metrics for the learning objective.


Efficient Bayesian Learning in Social Networks with Gaussian Estimators

arXiv.org Machine Learning

We consider a group of Bayesian agents who try to estimate a state of the world $\theta$ through interaction on a social network. Each agent $v$ initially receives a private measurement of $\theta$: a number $S_v$ picked from a Gaussian distribution with mean $\theta$ and standard deviation one. Then, in each discrete time iteration, each reveals its estimate of $\theta$ to its neighbors, and, observing its neighbors' actions, updates its belief using Bayes' Law. This process aggregates information efficiently, in the sense that all the agents converge to the belief that they would have, had they access to all the private measurements. We show that this process is computationally efficient, so that each agent's calculation can be easily carried out. We also show that on any graph the process converges after at most $2N \cdot D$ steps, where $N$ is the number of agents and $D$ is the diameter of the network. Finally, we show that on trees and on distance transitive-graphs the process converges after $D$ steps, and that it preserves privacy, so that agents learn very little about the private signal of most other agents, despite the efficient aggregation of information. Our results extend those in an unpublished manuscript of the first and last authors.