Goto

Collaborating Authors

Results


Neural Manipulation Planning on Constraint Manifolds

arXiv.org Artificial Intelligence

The presence of task constraints imposes a significant challenge to motion planning. Despite all recent advancements, existing algorithms are still computationally expensive for most planning problems. In this paper, we present Constrained Motion Planning Networks (CoMPNet), the first neural planner for multimodal kinematic constraints. Our approach comprises the following components: i) constraint and environment perception encoders; ii) neural robot configuration generator that outputs configurations on/near the constraint manifold(s), and iii) a bidirectional planning algorithm that takes the generated configurations to create a feasible robot motion trajectory. We show that CoMPNet solves practical motion planning tasks involving both unconstrained and constrained problems. Furthermore, it generalizes to new unseen locations of the objects, i.e., not seen during training, in the given environments with high success rates. When compared to the state-of-the-art constrained motion planning algorithms, CoMPNet outperforms by order of magnitude improvement in computational speed with a significantly lower variance.


Current Advancements on Autonomous Mission Planning and Management Systems: an AUV and UAV perspective

arXiv.org Artificial Intelligence

Analyzing encircling situation is the most crucial part of autonomous adaptation. Since there are many unknown and constantly changing factors in the real environment, momentary adjustment to the consistently alternating circumstances is highly required for addressing autonomy. To respond properly to changing environment, an utterly self-ruling vehicle ought to have the capacity to realize/comprehend its particular position and the surrounding environment. However, these vehicles extremely rely on human involvement to resolve entangled missions that cannot be precisely characterized in advance, which restricts their applications and accuracy. Reducing dependence on human supervision can be achieved by improving level of autonomy. Over the previous decades, autonomy and mission planning have been extensively researched on different structures and diverse conditions; nevertheless, aiming at robust mission planning in extreme conditions, here we provide exhaustive study of UVs autonomy as well as its related properties in internal and external situation awareness. In the following discussion, different difficulties in the scope of AUVs and UAVs will be discussed.


A Survey of Behavior Trees in Robotics and AI

arXiv.org Artificial Intelligence

Behavior Trees (BTs) were invented as a tool to enable modular AI in computer games, but have received an increasing amount of attention in the robotics community in the last decade. With rising demands on agent AI complexity, game programmers found that the Finite State Machines (FSM) that they used scaled poorly and were difficult to extend, adapt and reuse. In BTs, the state transition logic is not dispersed across the individual states, but organized in a hierarchical tree structure, with the states as leaves. This has a significant effect on modularity, which in turn simplifies both synthesis and analysis by humans and algorithms alike. These advantages are needed not only in game AI design, but also in robotics, as is evident from the research being done. In this paper we present a comprehensive survey of the topic of BTs in Artificial Intelligence and Robotic applications. The existing literature is described and categorized based on methods, application areas and contributions, and the paper is concluded with a list of open research challenges.


Flexible and Efficient Long-Range Planning Through Curious Exploration

arXiv.org Artificial Intelligence

Identifying algorithms that flexibly and efficiently discover temporally-extended multi-phase plans is an essential step for the advancement of robotics and model-based reinforcement learning. The core problem of long-range planning is finding an efficient way to search through the tree of possible action sequences. Existing non-learned planning solutions from the Task and Motion Planning (TAMP) literature rely on the existence of logical descriptions for the effects and preconditions for actions. This constraint allows TAMP methods to efficiently reduce the tree search problem but limits their ability to generalize to unseen and complex physical environments. In contrast, deep reinforcement learning (DRL) methods use flexible neural-network-based function approximators to discover policies that generalize naturally to unseen circumstances. However, DRL methods struggle to handle the very sparse reward landscapes inherent to long-range multi-step planning situations. Here, we propose the Curious Sample Planner (CSP), which fuses elements of TAMP and DRL by combining a curiosity-guided sampling strategy with imitation learning to accelerate planning. We show that CSP can efficiently discover interesting and complex temporally-extended plans for solving a wide range of physically realistic 3D tasks. In contrast, standard planning and learning methods often fail to solve these tasks at all or do so only with a huge and highly variable number of training samples. We explore the use of a variety of curiosity metrics with CSP and analyze the types of solutions that CSP discovers. Finally, we show that CSP supports task transfer so that the exploration policies learned during experience with one task can help improve efficiency on related tasks.


Experimental Comparison of Global Motion Planning Algorithms for Wheeled Mobile Robots

arXiv.org Artificial Intelligence

Planning smooth and energy-efficient motions for wheeled mobile robots is a central task for applications ranging from autonomous driving to service and intralogistic robotics. Over the past decades, a wide variety of motion planners, steer functions and path-improvement techniques have been proposed for such non-holonomic systems. With the objective of comparing this large assortment of state-of-the-art motion-planning techniques, we introduce a novel open-source motion-planning benchmark for wheeled mobile robots, whose scenarios resemble real-world applications (such as navigating warehouses, moving in cluttered cities or parking), and propose metrics for planning efficiency and path quality. Our benchmark is easy to use and extend, and thus allows practitioners and researchers to evaluate new motion-planning algorithms, scenarios and metrics easily. We use our benchmark to highlight the strengths and weaknesses of several common state-of-the-art motion planners and provide recommendations on when they should be used.


Task-assisted Motion Planning in Partially Observable Domains

arXiv.org Artificial Intelligence

Antony Thomas and Sunny Amatya † and Fulvio Mastrogiovanni and Marco Baglietto Abstract -- We present an integrated T ask-Motion Planning framework for robot navigation in belief space. Autonomous robots operating in real world complex scenarios require planning in the discrete (task) space and the continuous (motion) space. T o this end, we propose a framework for integrating belief space reasoning within a hybrid task planner . The expressive power of PDDL combined with heuristic-driven semantic attachments performs the propagated and posterior belief estimates while planning. The underlying methodology for the development of the combined hybrid planner is discussed, providing suggestions for improvements and future work. I NTRODUCTION Autonomous robots operating in complex real world scenarios require different levels of planning to execute their tasks. High-level (task) planning helps break down a given set of tasks into a sequence of sub-tasks, actual execution of each of these sub-tasks would require low-level control actions to generate appropriate robot motions. In fact, the dependency between logical and geometrical aspects is pervasive in both task planning and execution. Hence, planning should be performed in the task-motion or the discrete-continuous space. In recent years, combining high-level task planning with low-level motion planning has been a subject of great interest among the Robotics and Artificial Intelligence (AI) community.


Potentially Guided Bidirectionalized RRT* for Fast Optimal Path Planning in Cluttered Environments

arXiv.org Artificial Intelligence

Rapidly-exploring Random Tree star (RRT*) has recently gained immense popularity in the motion planning community as it provides a probabilistically complete and asymptotically optimal solution without requiring the complete information of the obstacle space. In spite of all of its advantages, RRT* converges to an optimal solution very slowly. Hence to improve the convergence rate, its bidirectional variants were introduced, the Bi-directional RRT* (B-RRT*) and Intelligent Bi-directional RRT* (IB-RRT*). However, as both variants perform pure exploration, they tend to suffer in highly cluttered environments. In order to overcome these limitations, we introduce a new concept of potentially guided bidirectional trees in our proposed Potentially Guided Intelligent Bi-directional RRT* (PIB-RRT*) and Potentially Guided Bi-directional RRT* (PB-RRT*). The proposed algorithms greatly improve the convergence rate and have a more efficient memory utilization. Theoretical and experimental evaluation of the proposed algorithms have been made and compared to the latest state of the art motion planning algorithms under different challenging environmental conditions and have proven their remarkable improvement in efficiency and convergence rate.


A Data-Driven Approach for Autonomous Motion Planning and Control in Off-Road Driving Scenarios

arXiv.org Artificial Intelligence

This paper presents a novel data-driven approach to vehicle motion planning and control in off-road driving scenarios. For autonomous off-road driving, environmental conditions impact terrain traversability as a function of weather, surface composition, and slope. Geographical information system (GIS) and National Centers for Environmental Information datasets are processed to provide this information for interactive planning and control system elements. A top-level global route planner (GRP) defines optimal waypoints using dynamic programming (DP). A local path planner (LPP) computes a desired trajectory between waypoints such that infeasible control states and collisions with obstacles are avoided. The LPP also updates the GRP with real-time sensing and control data. A low-level feedback controller applies feedback linearization to asymptotically track the specified LPP trajectory. Autonomous driving simulation results are presented for traversal of terrains in Oregon and Indiana case studies.


Extending Classical Planning with State Constraints: Heuristics and Search for Optimal Planning

Journal of Artificial Intelligence Research

We present a principled way of extending a classical AI planning formalism with systems of state constraints, which relate - sometimes determine - the values of variables in each state traversed by the plan. This extension occupies an attractive middle ground between expressivity and complexity. It enables modelling a new range of problems, as well as formulating more efficient models of classical planning problems. An example of the former is planning-based control of networked physical systems - power networks, for example - in which a local, discrete control action can have global effects on continuous quantities, such as altering flows across the entire network. At the same time, our extension remains decidable as long as the satisfiability of sets of state constraints is decidable, including in the presence of numeric state variables, and we demonstrate that effective techniques for cost-optimal planning known in the classical setting - in particular, relaxation-based admissible heuristics - can be adapted to the extended formalism. In this paper, we apply our approach to constraints in the form of linear or non-linear equations over numeric state variables, but the approach is independent of the type of state constraints, as long as there exists a procedure that decides their consistency. The planner and the constraint solver interact through a well-defined, narrow interface, in which the solver requires no specialisation to the planning context.


KABouM: Knowledge-Level Action and Bounding Geometry Motion Planner

Journal of Artificial Intelligence Research

For robots to solve real world tasks, they often require the ability to reason about both symbolic and geometric knowledge. We present a framework, called KABouM, for integrating knowledge-level task planning and motion planning in a bounding geometry. By representing symbolic information at the knowledge level, we can model incomplete information, sensing actions and information gain; by representing all geometric entities--objects, robots and swept volumes of motions--by sets of convex polyhedra, we can efficiently plan manipulation actions and raise reasoning about geometric predicates, such as collisions, to the symbolic level. At the geometric level, we take advantage of our bounded convex decomposition and swept volume computation with quadratic convergence, and fast collision detection of convex bodies. We evaluate our approach on a wide set of problems using real robots, including tasks with multiple manipulators, sensing and branched plans, and mobile manipulation.