Collaborating Authors


Mental Stress Detection using Data from Wearable and Non-wearable Sensors: A Review Artificial Intelligence

This paper presents a comprehensive review of methods covering significant subjective and objective human stress detection techniques available in the literature. The methods for measuring human stress responses could include subjective questionnaires (developed by psychologists) and objective markers observed using data from wearable and non-wearable sensors. In particular, wearable sensor-based methods commonly use data from electroencephalography, electrocardiogram, galvanic skin response, electromyography, electrodermal activity, heart rate, heart rate variability, and photoplethysmography both individually and in multimodal fusion strategies. Whereas, methods based on non-wearable sensors include strategies such as analyzing pupil dilation and speech, smartphone data, eye movement, body posture, and thermal imaging. Whenever a stressful situation is encountered by an individual, physiological, physical, or behavioral changes are induced which help in coping with the challenge at hand. A wide range of studies has attempted to establish a relationship between these stressful situations and the response of human beings by using different kinds of psychological, physiological, physical, and behavioral measures. Inspired by the lack of availability of a definitive verdict about the relationship of human stress with these different kinds of markers, a detailed survey about human stress detection methods is conducted in this paper. In particular, we explore how stress detection methods can benefit from artificial intelligence utilizing relevant data from various sources. This review will prove to be a reference document that would provide guidelines for future research enabling effective detection of human stress conditions.

Tutorial on amortized optimization for learning to optimize over continuous domains Artificial Intelligence

Optimization is a ubiquitous modeling tool and is often deployed in settings which repeatedly solve similar instances of the same problem. Amortized optimization methods use learning to predict the solutions to problems in these settings. This leverages the shared structure between similar problem instances. In this tutorial, we will discuss the key design choices behind amortized optimization, roughly categorizing 1) models into fully-amortized and semi-amortized approaches, and 2) learning methods into regression-based and objectivebased. We then view existing applications through these foundations to draw connections between them, including for manifold optimization, variational inference, sparse coding, meta-learning, control, reinforcement learning, convex optimization, and deep equilibrium networks. This framing enables us easily see, for example, that the amortized inference in variational autoencoders is conceptually identical to value gradients in control and reinforcement learning as they both use fully-amortized models with an objective-based loss.

Submodularity In Machine Learning and Artificial Intelligence Artificial Intelligence

In this manuscript, we offer a gentle review of submodularity and supermodularity and their properties. We offer a plethora of submodular definitions; a full description of a number of example submodular functions and their generalizations; example discrete constraints; a discussion of basic algorithms for maximization, minimization, and other operations; a brief overview of continuous submodular extensions; and some historical applications. We then turn to how submodularity is useful in machine learning and artificial intelligence. This includes summarization, and we offer a complete account of the differences between and commonalities amongst sketching, coresets, extractive and abstractive summarization in NLP, data distillation and condensation, and data subset selection and feature selection. We discuss a variety of ways to produce a submodular function useful for machine learning, including heuristic hand-crafting, learning or approximately learning a submodular function or aspects thereof, and some advantages of the use of a submodular function as a coreset producer. We discuss submodular combinatorial information functions, and how submodularity is useful for clustering, data partitioning, parallel machine learning, active and semi-supervised learning, probabilistic modeling, and structured norms and loss functions.

Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Forecasting: theory and practice Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.

Deep Learning Interviews: Hundreds of fully solved job interview questions from a wide range of key topics in AI Artificial Intelligence

The second edition of Deep Learning Interviews is home to hundreds of fully-solved problems, from a wide range of key topics in AI. It is designed to both rehearse interview or exam specific topics and provide machine learning MSc / PhD. students, and those awaiting an interview a well-organized overview of the field. The problems it poses are tough enough to cut your teeth on and to dramatically improve your skills-but they're framed within thought-provoking questions and engaging stories. That is what makes the volume so specifically valuable to students and job seekers: it provides them with the ability to speak confidently and quickly on any relevant topic, to answer technical questions clearly and correctly, and to fully understand the purpose and meaning of interview questions and answers. Those are powerful, indispensable advantages to have when walking into the interview room. The book's contents is a large inventory of numerous topics relevant to DL job interviews and graduate level exams. That places this work at the forefront of the growing trend in science to teach a core set of practical mathematical and computational skills. It is widely accepted that the training of every computer scientist must include the fundamental theorems of ML, and AI appears in the curriculum of nearly every university. This volume is designed as an excellent reference for graduates of such programs.

What is Event Knowledge Graph: A Survey Artificial Intelligence

Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.

Towards Understanding Human Functional Brain Development with Explainable Artificial Intelligence: Challenges and Perspectives Artificial Intelligence

The last decades have seen significant advancements in non-invasive neuroimaging technologies that have been increasingly adopted to examine human brain development. However, these improvements have not necessarily been followed by more sophisticated data analysis measures that are able to explain the mechanisms underlying functional brain development. For example, the shift from univariate (single area in the brain) to multivariate (multiple areas in brain) analysis paradigms is of significance as it allows investigations into the interactions between different brain regions. However, despite the potential of multivariate analysis to shed light on the interactions between developing brain regions, artificial intelligence (AI) techniques applied render the analysis non-explainable. The purpose of this paper is to understand the extent to which current state-of-the-art AI techniques can inform functional brain development. In addition, a review of which AI techniques are more likely to explain their learning based on the processes of brain development as defined by developmental cognitive neuroscience (DCN) frameworks is also undertaken. This work also proposes that eXplainable AI (XAI) may provide viable methods to investigate functional brain development as hypothesised by DCN frameworks.

Selecting the suitable resampling strategy for imbalanced data classification regarding dataset properties Artificial Intelligence

In many application domains such as medicine, information retrieval, cybersecurity, social media, etc., datasets used for inducing classification models often have an unequal distribution of the instances of each class. This situation, known as imbalanced data classification, causes low predictive performance for the minority class examples. Thus, the prediction model is unreliable although the overall model accuracy can be acceptable. Oversampling and undersampling techniques are well-known strategies to deal with this problem by balancing the number of examples of each class. However, their effectiveness depends on several factors mainly related to data intrinsic characteristics, such as imbalance ratio, dataset size and dimensionality, overlapping between classes or borderline examples. In this work, the impact of these factors is analyzed through a comprehensive comparative study involving 40 datasets from different application areas. The objective is to obtain models for automatic selection of the best resampling strategy for any dataset based on its characteristics. These models allow us to check several factors simultaneously considering a wide range of values since they are induced from very varied datasets that cover a broad spectrum of conditions. This differs from most studies that focus on the individual analysis of the characteristics or cover a small range of values. In addition, the study encompasses both basic and advanced resampling strategies that are evaluated by means of eight different performance metrics, including new measures specifically designed for imbalanced data classification. The general nature of the proposal allows the choice of the most appropriate method regardless of the domain, avoiding the search for special purpose techniques that could be valid for the target data.

Neighborhood Random Walk Graph Sampling for Regularized Bayesian Graph Convolutional Neural Networks Machine Learning

In the modern age of social media and networks, graph representations of real-world phenomena have become an incredibly useful source to mine insights. Often, we are interested in understanding how entities in a graph are interconnected. The Graph Neural Network (GNN) has proven to be a very useful tool in a variety of graph learning tasks including node classification, link prediction, and edge classification. However, in most of these tasks, the graph data we are working with may be noisy and may contain spurious edges. That is, there is a lot of uncertainty associated with the underlying graph structure. Recent approaches to modeling uncertainty have been to use a Bayesian framework and view the graph as a random variable with probabilities associated with model parameters. Introducing the Bayesian paradigm to graph-based models, specifically for semi-supervised node classification, has been shown to yield higher classification accuracies. However, the method of graph inference proposed in recent work does not take into account the structure of the graph. In this paper, we propose a novel algorithm called Bayesian Graph Convolutional Network using Neighborhood Random Walk Sampling (BGCN-NRWS), which uses a Markov Chain Monte Carlo (MCMC) based graph sampling algorithm utilizing graph structure, reduces overfitting by using a variational inference layer, and yields consistently competitive classification results compared to the state-of-the-art in semi-supervised node classification.