Goto

Collaborating Authors

Results


Answering Fuzzy Queries over Fuzzy DL-Lite Ontologies

arXiv.org Artificial Intelligence

A prominent problem in knowledge representation is how to answer queries taking into account also the implicit consequences of an ontology representing domain knowledge. While this problem has been widely studied within the realm of description logic ontologies, it has been surprisingly neglected within the context of vague or imprecise knowledge, particularly from the point of view of mathematical fuzzy logic. In this paper we study the problem of answering conjunctive queries and threshold queries w.r.t. ontologies in fuzzy DL-Lite. Specifically, we show through a rewriting approach that threshold query answering w.r.t. consistent ontologies remains in $AC_0$ in data complexity, but that conjunctive query answering is highly dependent on the selected triangular norm, which has an impact on the underlying semantics. For the idempodent G\"odel t-norm, we provide an effective method based on a reduction to the classical case. This paper is under consideration in Theory and Practice of Logic Programming (TPLP).


A conditional, a fuzzy and a probabilistic interpretation of self-organising maps

arXiv.org Artificial Intelligence

In this paper we establish a link between preferential semantics for description logics and self-organising maps, which have been proposed as possible candidates to explain the psychological mechanisms underlying category generalisation. In particular, we show that a concept-wise multipreference semantics, which takes into account preferences with respect to different concepts and has been recently proposed for defeasible description logics, can be used to to provide a logical interpretation of SOMs. We also provide a logical interpretation of SOMs in terms of a fuzzy description logic as well as a probabilistic account.


Reasoning with Very Expressive Fuzzy Description Logics

arXiv.org Artificial Intelligence

It is widely recognized today that the management of imprecision and vagueness will yield more intelligent and realistic knowledge-based applications. Description Logics (DLs) are a family of knowledge representation languages that have gained considerable attention the last decade, mainly due to their decidability and the existence of empirically high performance of reasoning algorithms. In this paper, we extend the well known fuzzy ALC DL to the fuzzy SHIN DL, which extends the fuzzy ALC DL with transitive role axioms (S), inverse roles (I), role hierarchies (H) and number restrictions (N). We illustrate why transitive role axioms are difficult to handle in the presence of fuzzy interpretations and how to handle them properly. Then we extend these results by adding role hierarchies and finally number restrictions. The main contributions of the paper are the decidability proof of the fuzzy DL languages fuzzy-SI and fuzzy-SHIN, as well as decision procedures for the knowledge base satisfiability problem of the fuzzy-SI and fuzzy-SHIN.


Reasoning with Very Expressive Fuzzy Description Logics

Journal of Artificial Intelligence Research

It is widely recognized today that the management of imprecision and vagueness will yield more intelligent and realistic knowledge-based applications. Description Logics (DLs) are a family of knowledge representation languages that have gained considerable attention the last decade, mainly due to their decidability and the existence of empirically high performance of reasoning algorithms. In this paper, we extend the well known fuzzy ALC DL to the fuzzy SHIN DL, which extends the fuzzy ALC DL with transitive role axioms (S), inverse roles (I), role hierarchies (H) and number restrictions (N). We illustrate why transitive role axioms are difficult to handle in the presence of fuzzy interpretations and how to handle them properly. Then we extend these results by adding role hierarchies and finally number restrictions. The main contributions of the paper are the decidability proof of the fuzzy DL languages fuzzy-SI and fuzzy-SHIN, as well as decision procedures for the knowledge base satisfiability problem of the fuzzy-SI and fuzzy-SHIN.