Goto

Collaborating Authors

Results


A Survey on Hyperdimensional Computing aka Vector Symbolic Architectures, Part II: Applications, Cognitive Models, and Challenges

arXiv.org Artificial Intelligence

This is Part II of the two-part comprehensive survey devoted to a computing framework most commonly known under the names Hyperdimensional Computing and Vector Symbolic Architectures (HDC/VSA). Both names refer to a family of computational models that use high-dimensional distributed representations and rely on the algebraic properties of their key operations to incorporate the advantages of structured symbolic representations and vector distributed representations. Holographic Reduced Representations is an influential HDC/VSA model that is well-known in the machine learning domain and often used to refer to the whole family. However, for the sake of consistency, we use HDC/VSA to refer to the area. Part I of this survey covered foundational aspects of the area, such as historical context leading to the development of HDC/VSA, key elements of any HDC/VSA model, known HDC/VSA models, and transforming input data of various types into high-dimensional vectors suitable for HDC/VSA. This second part surveys existing applications, the role of HDC/VSA in cognitive computing and architectures, as well as directions for future work. Most of the applications lie within the machine learning/artificial intelligence domain, however we also cover other applications to provide a thorough picture. The survey is written to be useful for both newcomers and practitioners.


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence

arXiv.org Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.


A 2021 NLP Retrospective

#artificialintelligence

Every company that derives value from language stands to benefit from NLP, the branch of machine learning that has the most transformative potential. Language is the lowest common denominator in almost all of our interactions, and the ways in which we can capture value from language has changed dramatically over the last three years. Recent advancements in NLP have outsized potential to accelerate business performance. It even has the promise of bringing trust and integrity back to our online interactions. Large incumbents have been the first to jump onboard, but the real promise lies in the next wave of NLP applications and tools that will translate the hype around artificial intelligence from ideology into reality. So, there you have it, these are my personal highlights of 2021 in NLP. I hope you enjoyed this summary and it'd be great to hear about your personal highlights from the past 12 months in NLP. Please comment on this blog post or reach out directly.


A 2021 NLP Retrospective

#artificialintelligence

Every company that derives value from language stands to benefit from NLP, the branch of machine learning that has the most transformative potential. Language is the lowest common denominator in almost all of our interactions, and the ways in which we can capture value from language has changed dramatically over the last three years. Recent advancements in NLP have outsized potential to accelerate business performance. It even has the promise of bringing trust and integrity back to our online interactions. Large incumbents have been the first to jump onboard, but the real promise lies in the next wave of NLP applications and tools that will translate the hype around artificial intelligence from ideology into reality. So, there you have it, these are my personal highlights of 2021 in NLP. I hope you enjoyed this summary and it'd be great to hear about your personal highlights from the past 12 months in NLP. Please comment on this blog post or reach out directly.


Artificial Intelligence for Social Good: A Survey

arXiv.org Artificial Intelligence

Its impact is drastic and real: Youtube's AIdriven recommendation system would present sports videos for days if one happens to watch a live baseball game on the platform [1]; email writing becomes much faster with machine learning (ML) based auto-completion [2]; many businesses have adopted natural language processing based chatbots as part of their customer services [3]. AI has also greatly advanced human capabilities in complex decision-making processes ranging from determining how to allocate security resources to protect airports [4] to games such as poker [5] and Go [6]. All such tangible and stunning progress suggests that an "AI summer" is happening. As some put it, "AI is the new electricity" [7]. Meanwhile, in the past decade, an emerging theme in the AI research community is the so-called "AI for social good" (AI4SG): researchers aim at developing AI methods and tools to address problems at the societal level and improve the wellbeing of the society.