Collaborating Authors


Challenges of Artificial Intelligence -- From Machine Learning and Computer Vision to Emotional Intelligence Artificial Intelligence

Artificial intelligence (AI) has become a part of everyday conversation and our lives. It is considered as the new electricity that is revolutionizing the world. AI is heavily invested in both industry and academy. However, there is also a lot of hype in the current AI debate. AI based on so-called deep learning has achieved impressive results in many problems, but its limits are already visible. AI has been under research since the 1940s, and the industry has seen many ups and downs due to over-expectations and related disappointments that have followed. The purpose of this book is to give a realistic picture of AI, its history, its potential and limitations. We believe that AI is a helper, not a ruler of humans. We begin by describing what AI is and how it has evolved over the decades. After fundamentals, we explain the importance of massive data for the current mainstream of artificial intelligence. The most common representations for AI, methods, and machine learning are covered. In addition, the main application areas are introduced. Computer vision has been central to the development of AI. The book provides a general introduction to computer vision, and includes an exposure to the results and applications of our own research. Emotions are central to human intelligence, but little use has been made in AI. We present the basics of emotional intelligence and our own research on the topic. We discuss super-intelligence that transcends human understanding, explaining why such achievement seems impossible on the basis of present knowledge,and how AI could be improved. Finally, a summary is made of the current state of AI and what to do in the future. In the appendix, we look at the development of AI education, especially from the perspective of contents at our own university.

Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021 Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.

Neuroscience Weighs in on Physics' Biggest Questions - Issue 107: The Edge


For an empirical science, physics can be remarkably dismissive of some of our most basic observations. We see objects existing in definite locations, but the wave nature of matter washes that away. We perceive time to flow, but how could it, really? We feel ourselves to be free agents, and that's just quaint. Physicists like nothing better than to expose our view of the universe as parochial. But when asked why our impressions are so off, they mumble some excuse and slip out the side door of the party. Physicists, in other words, face the same hard problem of consciousness as neuroscientists do: the problem of bridging objective description and subjective experience. To relate fundamental theory to what we actually observe in the world, they must explain what it means "to observe"--to become conscious of. And they tend to be slapdash about it. They divide the world into "system" and "observer," study the former intensely, and take the latter for granted--or, worse, for a fool.

A brief history of AI: how to prevent another winter (a critical review) Artificial Intelligence

The field of artificial intelligence (AI), regarded as one of the most enigmatic areas of science, has witnessed exponential growth in the past decade including a remarkably wide array of applications, having already impacted our everyday lives. Advances in computing power and the design of sophisticated AI algorithms have enabled computers to outperform humans in a variety of tasks, especially in the areas of computer vision and speech recognition. Yet, AI's path has never been smooth, having essentially fallen apart twice in its lifetime ('winters' of AI), both after periods of popular success ('summers' of AI). We provide a brief rundown of AI's evolution over the course of decades, highlighting its crucial moments and major turning points from inception to the present. In doing so, we attempt to learn, anticipate the future, and discuss what steps may be taken to prevent another 'winter'.

On the Opportunities and Risks of Foundation Models Artificial Intelligence

AI is undergoing a paradigm shift with the rise of models (e.g., BERT, DALL-E, GPT-3) that are trained on broad data at scale and are adaptable to a wide range of downstream tasks. We call these models foundation models to underscore their critically central yet incomplete character. This report provides a thorough account of the opportunities and risks of foundation models, ranging from their capabilities (e.g., language, vision, robotics, reasoning, human interaction) and technical principles(e.g., model architectures, training procedures, data, systems, security, evaluation, theory) to their applications (e.g., law, healthcare, education) and societal impact (e.g., inequity, misuse, economic and environmental impact, legal and ethical considerations). Though foundation models are based on standard deep learning and transfer learning, their scale results in new emergent capabilities,and their effectiveness across so many tasks incentivizes homogenization. Homogenization provides powerful leverage but demands caution, as the defects of the foundation model are inherited by all the adapted models downstream. Despite the impending widespread deployment of foundation models, we currently lack a clear understanding of how they work, when they fail, and what they are even capable of due to their emergent properties. To tackle these questions, we believe much of the critical research on foundation models will require deep interdisciplinary collaboration commensurate with their fundamentally sociotechnical nature.

A Theory of Consciousness from a Theoretical Computer Science Perspective: Insights from the Conscious Turing Machine Artificial Intelligence

The quest to understand consciousness, once the purview of philosophers and theologians, is now actively pursued by scientists of many stripes. We examine consciousness from the perspective of theoretical computer science (TCS), a branch of mathematics concerned with understanding the underlying principles of computation and complexity, including the implications and surprising consequences of resource limitations. In the spirit of Alan Turing's simple yet powerful definition of a computer, the Turing Machine (TM), and perspective of computational complexity theory, we formalize a modified version of the Global Workspace Theory (GWT) of consciousness originated by cognitive neuroscientist Bernard Baars and further developed by him, Stanislas Dehaene, Jean-Pierre Changeaux and others. We are not looking for a complex model of the brain nor of cognition, but for a simple computational model of (the admittedly complex concept of) consciousness. We do this by defining the Conscious Turing Machine (CTM), also called a conscious AI, and then we define consciousness and related notions in the CTM. While these are only mathematical (TCS) definitions, we suggest why the CTM has the feeling of consciousness. The TCS perspective provides a simple formal framework to employ tools from computational complexity theory and machine learning to help us understand consciousness and related concepts. Previously we explored high level explanations for the feelings of pain and pleasure in the CTM. Here we consider three examples related to vision (blindsight, inattentional blindness, and change blindness), followed by discussions of dreams, free will, and altered states of consciousness.

Transdisciplinary AI Observatory -- Retrospective Analyses and Future-Oriented Contradistinctions Artificial Intelligence

In the last years, AI safety gained international recognition in the light of heterogeneous safety-critical and ethical issues that risk overshadowing the broad beneficial impacts of AI. In this context, the implementation of AI observatory endeavors represents one key research direction. This paper motivates the need for an inherently transdisciplinary AI observatory approach integrating diverse retrospective and counterfactual views. We delineate aims and limitations while providing hands-on-advice utilizing concrete practical examples. Distinguishing between unintentionally and intentionally triggered AI risks with diverse socio-psycho-technological impacts, we exemplify a retrospective descriptive analysis followed by a retrospective counterfactual risk analysis. Building on these AI observatory tools, we present near-term transdisciplinary guidelines for AI safety. As further contribution, we discuss differentiated and tailored long-term directions through the lens of two disparate modern AI safety paradigms. For simplicity, we refer to these two different paradigms with the terms artificial stupidity (AS) and eternal creativity (EC) respectively. While both AS and EC acknowledge the need for a hybrid cognitive-affective approach to AI safety and overlap with regard to many short-term considerations, they differ fundamentally in the nature of multiple envisaged long-term solution patterns. By compiling relevant underlying contradistinctions, we aim to provide future-oriented incentives for constructive dialectics in practical and theoretical AI safety research.

A Theoretical Computer Science Perspective on Consciousness Artificial Intelligence

The quest to understand consciousness, once the purview of philosophers and theologians, is now actively pursued by scientists of many stripes. This paper studies consciousness from the perspective of theoretical computer science. It formalizes the Global Workspace Theory (GWT) originated by cognitive neuroscientist Bernard Baars and further developed by him, Stanislas Dehaene, and others. Our major contribution lies in the precise formal definition of a Conscious Turing Machine (CTM), also called a Conscious AI. We define the CTM in the spirit of Alan Turing's simple yet powerful definition of a computer, the Turing Machine (TM). We are not looking for a complex model of the brain nor of cognition but for a simple model of (the admittedly complex concept of) consciousness. After formally defining CTM, we give a formal definition of consciousness in CTM. We then suggest why the CTM has the feeling of consciousness. The reasonableness of the definitions and explanations can be judged by how well they agree with commonly accepted intuitive concepts of human consciousness, the breadth of related concepts that the model explains easily and naturally, and the extent of its agreement with scientific evidence.

Dynamic Models Applied to Value Learning in Artificial Intelligence Artificial Intelligence

Experts in Artificial Intelligence (AI) development predict that advances in the development of intelligent systems and agents will reshape vital areas in our society. Nevertheless, if such an advance is not made prudently and critically-reflexively, it can result in negative outcomes for humanity. For this reason, several researchers in the area are trying to develop a robust, beneficial, and safe concept of AI for the preservation of humanity and the environment. Currently, several of the open problems in the field of AI research arise from the difficulty of avoiding unwanted behaviors of intelligent agents and systems, and at the same time specifying what we want such systems to do, especially when we look for the possibility of intelligent agents acting in several domains over the long term. It is of utmost importance that artificial intelligent agents have their values aligned with human values, given the fact that we cannot expect an AI to develop human moral values simply because of its intelligence, as discussed in the Orthogonality Thesis. Perhaps this difficulty comes from the way we are addressing the problem of expressing objectives, values, and ends, using representational cognitive methods. A solution to this problem would be the dynamic approach proposed by Dreyfus, whose phenomenological philosophy shows that the human experience of being-in-the-world in several aspects is not well represented by the symbolic or connectionist cognitive method, especially in regards to the question of learning values. A possible approach to this problem would be to use theoretical models such as SED (situated embodied dynamics) to address the values learning problem in AI.

Intelligence Primer Artificial Intelligence

This primer explores the exciting subject of intelligence. Intelligence is a fundamental component of all living things, as well as Artificial Intelligence(AI). Artificial Intelligence has the potential to affect all of our lives and a new era for modern humans. This paper is an attempt to explore the ideas associated with intelligence, and by doing so understand the implications, constraints, and potentially the capabilities of future Artificial Intelligence. As an exploration, we journey into different parts of intelligence that appear essential. We hope that people find this useful in determining where Artificial Intelligence may be headed. Also, during the exploration, we hope to create new thought-provoking questions. Intelligence is not a single weighable quantity but a subject that spans Biology, Physics, Philosophy, Cognitive Science, Neuroscience, Psychology, and Computer Science. Historian Yuval Noah Harari pointed out that engineers and scientists in the future will have to broaden their understandings to include disciplines such as Psychology, Philosophy, and Ethics. Fiction writers have long portrayed engineers and scientists as deficient in these areas. Today, modern society, the emergence of Artificial Intelligence, and legal requirements all act as forcing functions to push these broader subjects into the foreground. We start with an introduction to intelligence and move quickly onto more profound thoughts and ideas. We call this a Life, the Universe and Everything primer, after the famous science fiction book by Douglas Adams. Forty-two may very well be the right answer, but what are the questions?