Collaborating Authors


What is 6G, if anything? A guide to what to expect, from whom, and when


If there is to be a "6G Wireless," its proponents will need to learn some significant lessons from the era of 5G. Already, 5G Wireless as a market strategy is four years old. The R&D divisions of telecommunications firms whose 5G rollouts are well under way, are now looking ahead to whatever the next version of wireless may be. . . So far, what they're seeing may be a bit far out. It's a capital improvement project the size of the entire planet, replacing one wireless architecture created this century with another one that aims to lower energy consumption and maintenance costs. "6G must deliver an outcome that is aligned with real needs," remarked David Lister, Head of 6G Research and Development Technology at Europe's Vodafone Group, "and deliver outcomes that are sustainable and commercially driven." Lister was speaking at an annual conference called the 6G Symposium. Yes, there is already an annual 6G Symposium. Back in 1998, the leading stakeholders in global telecommunications formed the 3GPP consortium, to officially designate which technologies belong to a "G" and which don't.

A Fast Heuristic for Gateway Location in Wireless Backhaul of 5G Ultra-Dense Networks Artificial Intelligence

In 5G Ultra-Dense Networks, a distributed wireless backhaul is an attractive solution for forwarding traffic to the core. The macro-cell coverage area is divided into many small cells. A few of these cells are designated as gateways and are linked to the core by high-capacity fiber optic links. Each small cell is associated with one gateway and all small cells forward their traffic to their respective gateway through multi-hop mesh networks. We investigate the gateway location problem and show that finding near-optimal gateway locations improves the backhaul network capacity. An exact p-median integer linear program is formulated for comparison with our novel K-GA heuristic that combines a Genetic Algorithm (GA) with K-means clustering to find near-optimal gateway locations. We compare the performance of KGA with six other approaches in terms of average number of hops and backhaul network capacity at different node densities through extensive Monte Carlo simulations. All approaches are tested in various user distribution scenarios, including uniform distribution, bivariate Gaussian distribution, and cluster distribution. In all cases K-GA provides near-optimal results, achieving average number of hops and backhaul network capacity within 2% of optimal while saving an average of 95% of the execution time.

The Next Decade of Telecommunications Artificial Intelligence Artificial Intelligence

It has been an exciting journey since the mobile communications and artificial intelligence were conceived 37 years and 64 years ago. While both fields evolved independently and profoundly changed communications and computing industries, the rapid convergence of 5G and deep learning is beginning to significantly transform the core communication infrastructure, network management and vertical applications. The paper first outlines the individual roadmaps of mobile communications and artificial intelligence in the early stage, with a concentration to review the era from 3G to 5G when AI and mobile communications started to converge. With regard to telecommunications artificial intelligence, the paper further introduces in detail the progress of artificial intelligence in the ecosystem of mobile communications. The paper then summarizes the classifications of AI in telecom ecosystems along with its evolution paths specified by various international telecommunications standardization bodies. Towards the next decade, the paper forecasts the prospective roadmap of telecommunications artificial intelligence. In line with 3GPP and ITU-R timeline of 5G & 6G, the paper further explores the network intelligence following 3GPP and ORAN routes respectively, experience and intention driven network management and operation, network AI signalling system, intelligent middle-office based BSS, intelligent customer experience management and policy control driven by BSS and OSS convergence, evolution from SLA to ELA, and intelligent private network for verticals. The paper is concluded with the vision that AI will reshape the future B5G or 6G landscape and we need pivot our R&D, standardizations, and ecosystem to fully take the unprecedented opportunities.

5G-and-Beyond Networks with UAVs: From Communications to Sensing and Intelligence Artificial Intelligence

Due to the advancements in cellular technologies and the dense deployment of cellular infrastructure, integrating unmanned aerial vehicles (UAVs) into the fifth-generation (5G) and beyond cellular networks is a promising solution to achieve safe UAV operation as well as enabling diversified applications with mission-specific payload data delivery. In particular, 5G networks need to support three typical usage scenarios, namely, enhanced mobile broadband (eMBB), ultra-reliable low-latency communications (URLLC), and massive machine-type communications (mMTC). On the one hand, UAVs can be leveraged as cost-effective aerial platforms to provide ground users with enhanced communication services by exploiting their high cruising altitude and controllable maneuverability in three-dimensional (3D) space. On the other hand, providing such communication services simultaneously for both UAV and ground users poses new challenges due to the need for ubiquitous 3D signal coverage as well as the strong air-ground network interference. Besides the requirement of high-performance wireless communications, the ability to support effective and efficient sensing as well as network intelligence is also essential for 5G-and-beyond 3D heterogeneous wireless networks with coexisting aerial and ground users. In this paper, we provide a comprehensive overview of the latest research efforts on integrating UAVs into cellular networks, with an emphasis on how to exploit advanced techniques (e.g., intelligent reflecting surface, short packet transmission, energy harvesting, joint communication and radar sensing, and edge intelligence) to meet the diversified service requirements of next-generation wireless systems. Moreover, we highlight important directions for further investigation in future work.

Hypergraph reconstruction from network data Machine Learning

Networks can describe the structure of a wide variety of complex systems by specifying how pairs of nodes interact. This choice of representation is flexible, but not necessarily appropriate when joint interactions between groups of nodes are needed to explain empirical phenomena. Networks remain the de facto standard, however, as relational datasets often fail to include higher-order interactions. Here, we introduce a Bayesian approach to reconstruct these missing higher-order interactions, from pairwise network data. Our method is based on the principle of parsimony and only includes higher-order structures when there is sufficient statistical evidence for them.

Fractal Gaussian Networks: A sparse random graph model based on Gaussian Multiplicative Chaos Machine Learning

We propose a novel stochastic network model, called Fractal Gaussian Network (FGN), that embodies well-defined and analytically tractable fractal structures. Such fractal structures have been empirically observed in diverse applications. FGNs interpolate continuously between the popular purely random geometric graphs (a.k.a. the Poisson Boolean network), and random graphs with increasingly fractal behavior. In fact, they form a parametric family of sparse random geometric graphs that are parametrized by a fractality parameter $\nu$ which governs the strength of the fractal structure. FGNs are driven by the latent spatial geometry of Gaussian Multiplicative Chaos (GMC), a canonical model of fractality in its own right. We asymptotically characterize the expected number of edges and triangle in FGNs. We then examine the natural question of detecting the presence of fractality and the problem of parameter estimation based on observed network data, in addition to fundamental properties of the FGN as a random graph model. We also explore fractality in community structures by unveiling a natural stochastic block model in the setting of FGNs.

Swarm Intelligence for Next-Generation Wireless Networks: Recent Advances and Applications Artificial Intelligence

Due to the proliferation of smart devices and emerging applications, many next-generation technologies have been paid for the development of wireless networks. Even though commercial 5G has just been widely deployed in some countries, there have been initial efforts from academia and industrial communities for 6G systems. In such a network, a very large number of devices and applications are emerged, along with heterogeneity of technologies, architectures, mobile data, etc., and optimizing such a network is of utmost importance. Besides convex optimization and game theory, swarm intelligence (SI) has recently appeared as a promising optimization tool for wireless networks. As a new subdivision of artificial intelligence, SI is inspired by the collective behaviors of societies of biological species. In SI, simple agents with limited capabilities would achieve intelligent strategies for high-dimensional and challenging problems, so it has recently found many applications in next-generation wireless networks (NGN). However, researchers may not be completely aware of the full potential of SI techniques. In this work, our primary focus will be the integration of these two domains: NGN and SI. Firstly, we provide an overview of SI techniques from fundamental concepts to well-known optimizers. Secondly, we review the applications of SI to settle emerging issues in NGN, including spectrum management and resource allocation, wireless caching and edge computing, network security, and several other miscellaneous issues. Finally, we highlight open challenges and issues in the literature, and introduce some interesting directions for future research.

A Review on Computational Intelligence Techniques in Cloud and Edge Computing Artificial Intelligence

Cloud computing (CC) is a centralized computing paradigm that accumulates resources centrally and provides these resources to users through Internet. Although CC holds a large number of resources, it may not be acceptable by real-time mobile applications, as it is usually far away from users geographically. On the other hand, edge computing (EC), which distributes resources to the network edge, enjoys increasing popularity in the applications with low-latency and high-reliability requirements. EC provides resources in a decentralized manner, which can respond to users' requirements faster than the normal CC, but with limited computing capacities. As both CC and EC are resource-sensitive, several big issues arise, such as how to conduct job scheduling, resource allocation, and task offloading, which significantly influence the performance of the whole system. To tackle these issues, many optimization problems have been formulated. These optimization problems usually have complex properties, such as non-convexity and NP-hardness, which may not be addressed by the traditional convex optimization-based solutions. Computational intelligence (CI), consisting of a set of nature-inspired computational approaches, recently exhibits great potential in addressing these optimization problems in CC and EC. This paper provides an overview of research problems in CC and EC and recent progresses in addressing them with the help of CI techniques. Informative discussions and future research trends are also presented, with the aim of offering insights to the readers and motivating new research directions.

A Non-Stationary Bandit-Learning Approach to Energy-Efficient Femto-Caching with Rateless-Coded Transmission Machine Learning

The ever-increasing demand for media streaming together with limited backhaul capacity renders developing efficient file-delivery methods imperative. One such method is femto-caching, which, despite its great potential, imposes several challenges such as efficient resource management. We study a resource allocation problem for joint caching and transmission in small cell networks, where the system operates in two consecutive phases: (i) cache placement, and (ii) joint file- and transmit power selection followed by broadcasting. We define the utility of every small base station in terms of the number of successful reconstructions per unit of transmission power. We then formulate the problem as to select a file from the cache together with a transmission power level for every broadcast round so that the accumulated utility over the horizon is maximized. The former problem boils down to a stochastic knapsack problem, and we cast the latter as a multi-armed bandit problem. We develop a solution to each problem and provide theoretical and numerical evaluations. In contrast to the state-of-the-art research, the proposed approach is especially suitable for networks with time-variant statistical properties. Moreover, it is applicable and operates well even when no initial information about the statistical characteristics of the random parameters such as file popularity and channel quality is available.

The 2018 Survey: AI and the Future of Humans


"Please think forward to the year 2030. Analysts expect that people will become even more dependent on networked artificial intelligence (AI) in complex digital systems. Some say we will continue on the historic arc of augmenting our lives with mostly positive results as we widely implement these networked tools. Some say our increasing dependence on these AI and related systems is likely to lead to widespread difficulties. Our question: By 2030, do you think it is most likely that advancing AI and related technology systems will enhance human capacities and empower them? That is, most of the time, will most people be better off than they are today? Or is it most likely that advancing AI and related technology systems will lessen human autonomy and agency to such an extent that most people will not be better off than the way things are today? Please explain why you chose the answer you did and sketch out a vision of how the human-machine/AI collaboration will function in 2030.