Goto

Collaborating Authors

Results


AI detects protein signatures for Alzeihmer's disease in the blood - Advanced Science News

#artificialintelligence

Nanoparticles could make a reliable blood test for Alzheimer's disease a reality; image credit: National Cancer Institute, Daniel Sone Using nanoparticles with different surface properties, researchers are able to detect subtle changes in the composition of proteins in the plasma years before the presentation of clinical symptoms of Alzheimer's disease, which include memory loss, confusion, and cognitive difficulties. Owing to the unique properties of nanoparticles, different proteins in biological fluids selectively stick onto their surface forming a protein corona, which was found to change during disease. Researchers from the United States and Italy identify these subtle changes in plasma protein patterns to distinguish plasma samples from healthy individuals and those diagnosed with Alzheimer's disease. "Protein corona composition is both influenced by specific health conditions as well as the chemical and physical properties of the nanoparticles themselves," says Dr. Claudia Corbo of the University of Milano-Bicocca and lead author of the study published in Advanced Healthcare Materials. "Binding of proteins to the surface of particles is very precise and dependent on the chemistry and shape of the particles and the chemistry and structure of the proteins," says senior author Professor Omid Farokhzad of Brigham and Women's Hospital and Harvard Medical School.


How a machine learning algorithm could identify the early stages of Alzheimer's in patients - Mental Daily

#artificialintelligence

A study published in the Journal of Medical Imaging unveils the use of machine learning to detect the early stages of Alzheimer's disease (AD) by functional magnetic resonance imaging. Alzheimer's disease is a neurodegenerative condition primarily occurring in late-adulthood and begins with symptoms of cognitive decline. Researchers from Texas Tech University developed a deep-learning algorithm called a convolutional neural network able to distinguish between the fMRI signals of healthy individuals, patients with mild cognitive impairment (MCI), and patients with Alzheimer's. "We present one such synergy of fMRI and deep learning, where we apply a simplified yet accurate method using a modified 3D convolutional neural networks to resting-state fMRI data for feature extraction and classification of Alzheimer's disease," the co-authors explained in their findings. "The convolutional neural network is designed in such a way that it uses the fMRI data with much less preprocessing, preserving both spatial and temporal information."


How a machine learning algorithm could identify the early stages of Alzheimer's in patients

#artificialintelligence

Researchers from Texas Tech University developed a deep-learning algorithm called a convolutional neural network able to distinguish between the …


Detecting Alzheimer's Earlier with the Help of Machine-Learning Algorithm

#artificialintelligence

Functional magnetic resonance imaging (fMRI) is a noninvasive diagnostic technique for brain disorders, such as Alzheimer's disease (AD). It measures minute changes in blood oxygen levels within the brain over time, giving insight into the local activity of neurons; however, fMRI has not been widely used in clinical diagnosis. Their limited use is due to the fact fMRI data are highly susceptible to noise, and the fMRI data structure is very complicated compared to a traditional x-ray or MRI scan. Scientists from Texas Tech University now report they developed a type of deep-learning algorithm known as a convolutional neural network (CNN) that can differentiate among the fMRI signals of healthy people, people with mild cognitive impairment, and people with AD. Their findings, "Spatiotemporal feature extraction and classification of Alzheimer's disease using deep learning 3D-CNN for fMRI data," is published in the Journal of Medical Imaging and led by Harshit Parmar, doctoral student at Texas Tech University.


USC leads massive new artificial intelligence study of Alzheimer's

#artificialintelligence

A massive problem like Alzheimer's disease (AD) — which affects nearly 50 million people worldwide — requires bold solutions. New funding expected to total $17.8 million, awarded to the Keck School of Medicine of USC's Mark and Mary Stevens Neuroimaging and Informatics Institute (INI) and its collaborators, is one key piece of that puzzle. The five-year National Institutes of Health (NIH)-funded effort, "Ultrascale Machine Learning to Empower Discovery in Alzheimer's Disease Biobanks," known as AI4AD, will develop state-of-the-art artificial intelligence (AI) methods and apply them to giant databases of genetic, imaging and cognitive data collected from AD patients. Forty co-investigators at 11 research centers will team up to leverage AI and machine learning to bolster precision diagnostics, prognosis and the development of new treatments for AD. "Our team of experts in computer science, genetics, neuroscience and imaging sciences will create algorithms that analyze data at a previously impossible scale," said Paul Thompson, PhD, associate director of the INI and project leader for the new grant. "Collectively, this will enable the discovery of new features in the genome that influence the biological processes involved in Alzheimer's disease." Predicting a diagnosis The project's first objective is to identify genetic and biological markers that predict an AD diagnosis — and to distinguish between several subtypes of the disease. To accomplish this, the research team will apply sophisticated AI and machine learning methods to a variety of data types, including tens of thousands of brain images and whole genome sequences. The investigators then will relate these findings to the clinical progression of AD, including in patients who have not yet developed dementia symptoms. The researchers will train AI methods on large databases of brain scans to identify patterns that can help detect the disease as it emerges in individual patients. "As we get older, each of us has a unique mix of brain changes that occur for decades before we develop any signs of Alzheimer's disease — changes in our blood vessels, the buildup of abnormal protein deposits and brain cell loss," said Thompson, who also directs INI's Imaging Genetics Center. "Our new AI methods will help us determine what changes are happening in each patient, as well as drivers of these processes in their DNA, that we can target with new drugs." The team is even creating a dedicated "Drug Repurposing Core" to identify ways to repurpose existing drugs to target newly identified segments of the genome, molecules or neurobiological processes involved in the disease. "We predict that combining AI with whole genome data and advanced brain scans will outperform methods used today to predict Alzheimer's disease progression," Thompson said. Advancing AI The AI4AD effort is part of the "Cognitive Systems Analysis of Alzheimer's Disease Genetic and Phenotypic Data" and "Harmonization of Alzheimer's Disease and Related Dementias (AD/ADRD) Genetic, Epidemiologic, and Clinical Data to Enhance Therapeutic Target Discovery" initiatives from the NIH's National Institute on Aging. These initiatives aim to create and develop advanced AI methods and apply them to extensive and harmonized rich genomic, imaging and cognitive data. Collectively, the goals of AI4AD leverage the promise of machine learning to contribute to precision diagnostics, prognostication, and targeted and novel treatments. Thompson and his USC team will collaborate with four co-principal investigators at the University of Pennsylvania, the University of Pittsburgh and the Indiana University School of Medicine. The researchers will also host regular training events at major AD neuroimaging and genetics conferences to help disseminate newly developed AI tools to investigators across the field. Research reported in this publication will be supported by the National Institute on Aging of the National Institutes of Health under Award Number U01AG068057. Also involved in the project are INI faculty members Neda Jahanshad and Lauren Salminen, as well as consortium manager Sophia Thomopoulos. — Zara Greenbaum


Researchers use AI methods to 'redefine' Alzheimer's disease

#artificialintelligence

As the search for successful Alzheimer's disease drugs remains elusive, experts believe that identifying biomarkers -- early biological signs of the disease -- could be key to solving the treatment conundrum. However, the rapid collection of data from tens of thousands of Alzheimer's patients far exceeds the scientific community's ability to make sense of it. Now, with a $17.8 million grant from the National Institute on Aging at the National Institutes of Health, researchers in the Perelman School of Medicine at the University of Pennsylvania will collaborate with 11 research centers to determine more precise diagnostic biomarkers and drug targets for the disease, which affects nearly 50 million people worldwide. For the project, the teams will apply advanced artificial intelligence (AI) methods to integrate and find patterns in genetic, imaging, and clinical data from over 60,000 Alzheimer's patients -- representing one of the largest and most ambitious research undertakings of its kind. Penn Medicine's Christos Davatzikos, PhD, a professor of Radiology and director of the Center for Biomedical Image Computing and Analytics, and Li Shen, PhD, a professor of Informatics, will serve as two of five co-principal investigators on the five-year project.


IBM and Pfizer claim AI can predict Alzheimer's onset with 71% accuracy

#artificialintelligence

Pfizer and IBM researchers claim to have developed a machine learning technique that can predict Alzheimer's disease years before symptoms develop. By analyzing small samples of language data obtained from clinical verbal tests, the team says their approach achieved 71% accuracy when tested against a group of cognitively healthy people. Alzheimer's disease begins with vague, often misinterpreted signs of mild memory loss followed by a slow, progressively serious decline in cognitive ability and quality of life. According to the nonprofit Alzheimer's Association, more than 5 million Americans of all ages have Alzheimer's, and every state is expected to see at least a 14% rise in the prevalence of Alzheimer's between 2017 and 2025. Due to the nature of Alzheimer's disease and how it takes hold in the brain, it's likely that the best way to delay its onset is through early intervention.


Penn Medicine Researchers Use Artificial Intelligence to 'Redefine' Alzheimer's Disease – PR News

#artificialintelligence

PHILADELPHIA – As the search for successful Alzheimer's disease drugs remains elusive, experts believe that identifying biomarkers -- early biological signs of the disease -- could be key to solving the treatment conundrum. However, the rapid collection of data from tens of thousands of Alzheimer's patients far exceeds the scientific community's ability to make sense of it. Now, with a $17.8 million grant from the National Institute on Aging at the National Institutes of Health, researchers in the Perelman School of Medicine at the University of Pennsylvania will collaborate with 11 research centers to determine more precise diagnostic biomarkers and drug targets for the disease, which affects nearly 50 million people worldwide. For the project, the teams will apply advanced artificial intelligence (AI) methods to integrate and find patterns in genetic, imaging, and clinical data from over 60,000 Alzheimer's patients -- representing one of the largest and most ambitious research undertakings of its kind. Penn Medicine's Christos Davatzikos, PhD, a professor of Radiology and director of the Center for Biomedical Image Computing and Analytics, and Li Shen, PhD, a professor of Informatics, will serve as two of five co-principal investigators on the five-year project.


Applications of GANs - 5 Influential Video Presentations

#artificialintelligence

Are GANs the next step in Deep Learning? Well, the subset of Machine Learning was once described by Yoshua Bengio as the most interesting idea in the last 10 years of ML, with the technique of using two neural networks against each other to generate new, synthetic instances of data that can pass for real data, opening many doors in the world of AI. That said, we wanted to explore some of the applications of GANs currently being used through the below 5 must-watch presentations from DeepMind, NASA, MIT, Insitro and Université de Montréal. In this presentation, Francesco introduces a new deep generative model for the genetic analysis of medical imaging, combining both convolutional neural networks and structured linear mixed models to extract latent imaging features in the context of genetic association studies. The linked presentation includes an application of the method to brain MRI images from the Alzheimer's Disease Neuroimaging Initiative dataset, where we reveal novel and known risk genes for neurological and psychiatric disorders. Genetic association studies and the process of evaluation during study is covered before looking at both the phenotypes and genetic variants of participants.


Fran Allen

Communications of the ACM

Frances E. Allen, an American computer scientist, ACM Fellow, and the first female recipient of the ACM A.M. Turing Award (2006), passed away on Aug. 4, 2020--her 88th birthday--from complications of Alzheimer's disease. Allen was raised on a dairy farm in Peru, NY, without running water or electricity. She received a BS degree in mathematics from the New York State College for Teachers (now the State University of New York at Albany). Inspired by a beloved math teacher, and by the example of her mother, who had also been a grade-school teacher, Allen started teaching high school math. She needed a master's degree to be certified, so she enrolled in a mathematics master's program at the University of Michigan.