Goto

Collaborating Authors

Results


GPT-3 Creative Fiction

#artificialintelligence

What if I told a story here, how would that story start?" Thus, the summarization prompt: "My second grader asked me what this passage means: …" When a given prompt isn't working and GPT-3 keeps pivoting into other modes of completion, that may mean that one hasn't constrained it enough by imitating a correct output, and one needs to go further; writing the first few words or sentence of the target output may be necessary.


Active World Model Learning with Progress Curiosity

arXiv.org Artificial Intelligence

World models are self-supervised predictive models of how the world evolves. Humans learn world models by curiously exploring their environment, in the process acquiring compact abstractions of high bandwidth sensory inputs, the ability to plan across long temporal horizons, and an understanding of the behavioral patterns of other agents. In this work, we study how to design such a curiosity-driven Active World Model Learning (AWML) system. To do so, we construct a curious agent building world models while visually exploring a 3D physical environment rich with distillations of representative real-world agents. We propose an AWML system driven by $\gamma$-Progress: a scalable and effective learning progress-based curiosity signal. We show that $\gamma$-Progress naturally gives rise to an exploration policy that directs attention to complex but learnable dynamics in a balanced manner, thus overcoming the "white noise problem". As a result, our $\gamma$-Progress-driven controller achieves significantly higher AWML performance than baseline controllers equipped with state-of-the-art exploration strategies such as Random Network Distillation and Model Disagreement.


AI Research Considerations for Human Existential Safety (ARCHES)

arXiv.org Artificial Intelligence

Framed in positive terms, this report examines how technical AI research might be steered in a manner that is more attentive to humanity's long-term prospects for survival as a species. In negative terms, we ask what existential risks humanity might face from AI development in the next century, and by what principles contemporary technical research might be directed to address those risks. A key property of hypothetical AI technologies is introduced, called \emph{prepotence}, which is useful for delineating a variety of potential existential risks from artificial intelligence, even as AI paradigms might shift. A set of \auxref{dirtot} contemporary research \directions are then examined for their potential benefit to existential safety. Each research direction is explained with a scenario-driven motivation, and examples of existing work from which to build. The research directions present their own risks and benefits to society that could occur at various scales of impact, and in particular are not guaranteed to benefit existential safety if major developments in them are deployed without adequate forethought and oversight. As such, each direction is accompanied by a consideration of potentially negative side effects.


System-Level Predictive Maintenance: Review of Research Literature and Gap Analysis

arXiv.org Artificial Intelligence

This paper reviews current literature in the field of predictive maintenance from the system point of view. We differentiate the existing capabilities of condition estimation and failure risk forecasting as currently applied to simple components, from the capabilities needed to solve the same tasks for complex assets. System-level analysis faces more complex latent degradation states, it has to comprehensively account for active maintenance programs at each component level and consider coupling between different maintenance actions, while reflecting increased monetary and safety costs for system failures. As a result, methods that are effective for forecasting risk and informing maintenance decisions regarding individual components do not readily scale to provide reliable sub-system or system level insights. A novel holistic modeling approach is needed to incorporate available structural and physical knowledge and naturally handle the complexities of actively fielded and maintained assets.


Building A User-Centric and Content-Driven Socialbot

arXiv.org Artificial Intelligence

To build Sounding Board, we develop a system architecture that is capable of accommodating dialog strategies that we designed for socialbot conversations. The architecture consists of a multi-dimensional language understanding module for analyzing user utterances, a hierarchical dialog management framework for dialog context tracking and complex dialog control, and a language generation process that realizes the response plan and makes adjustments for speech synthesis. Additionally, we construct a new knowledge base to power the socialbot by collecting social chat content from a variety of sources. An important contribution of the system is the synergy between the knowledge base and the dialog management, i.e., the use of a graph structure to organize the knowledge base that makes dialog control very efficient in bringing related content to the discussion. Using the data collected from Sounding Board during the competition, we carry out in-depth analyses of socialbot conversations and user ratings which provide valuable insights in evaluation methods for socialbots. We additionally investigate a new approach for system evaluation and diagnosis that allows scoring individual dialog segments in the conversation. Finally, observing that socialbots suffer from the issue of shallow conversations about topics associated with unstructured data, we study the problem of enabling extended socialbot conversations grounded on a document. To bring together machine reading and dialog control techniques, a graph-based document representation is proposed, together with methods for automatically constructing the graph. Using the graph-based representation, dialog control can be carried out by retrieving nodes or moving along edges in the graph. To illustrate the usage, a mixed-initiative dialog strategy is designed for socialbot conversations on news articles.


Autonomous discovery in the chemical sciences part I: Progress

arXiv.org Artificial Intelligence

This two-part review examines how automation has contributed to different aspects of discovery in the chemical sciences. In this first part, we describe a classification for discoveries of physical matter (molecules, materials, devices), processes, and models and how they are unified as search problems. We then introduce a set of questions and considerations relevant to assessing the extent of autonomy. Finally, we describe many case studies of discoveries accelerated by or resulting from computer assistance and automation from the domains of synthetic chemistry, drug discovery, inorganic chemistry, and materials science. These illustrate how rapid advancements in hardware automation and machine learning continue to transform the nature of experimentation and modelling. Part two reflects on these case studies and identifies a set of open challenges for the field.


Alphabet's Next Billion-Dollar Business: 10 Industries To Watch - CB Insights Research

#artificialintelligence

Alphabet is using its dominance in the search and advertising spaces -- and its massive size -- to find its next billion-dollar business. From healthcare to smart cities to banking, here are 10 industries the tech giant is targeting. With growing threats from its big tech peers Microsoft, Apple, and Amazon, Alphabet's drive to disrupt has become more urgent than ever before. The conglomerate is leveraging the power of its first moats -- search and advertising -- and its massive scale to find its next billion-dollar businesses. To protect its current profits and grow more broadly, Alphabet is edging its way into industries adjacent to the ones where it has already found success and entering new spaces entirely to find opportunities for disruption. Evidence of Alphabet's efforts is showing up in several major industries. For example, the company is using artificial intelligence to understand the causes of diseases like diabetes and cancer and how to treat them. Those learnings feed into community health projects that serve the public, and also help Alphabet's effort to build smart cities. Elsewhere, Alphabet is using its scale to build a better virtual assistant and own the consumer electronics software layer. It's also leveraging that scale to build a new kind of Google Pay-operated checking account. In this report, we examine how Alphabet and its subsidiaries are currently working to disrupt 10 major industries -- from electronics to healthcare to transportation to banking -- and what else might be on the horizon. Within the world of consumer electronics, Alphabet has already found dominance with one product: Android. Mobile operating system market share globally is controlled by the Linux-based OS that Google acquired in 2005 to fend off Microsoft and Windows Mobile. Today, however, Alphabet's consumer electronics strategy is being driven by its work in artificial intelligence. Google is building some of its own hardware under the Made by Google line -- including the Pixel smartphone, the Chromebook, and the Google Home -- but the company is doing more important work on hardware-agnostic software products like Google Assistant (which is even available on iOS).


A review of machine learning applications in wildfire science and management

arXiv.org Machine Learning

Artificial intelligence has been applied in wildfire science and management since the 1990s, with early applications including neural networks and expert systems. Since then the field has rapidly progressed congruently with the wide adoption of machine learning (ML) in the environmental sciences. Here, we present a scoping review of ML in wildfire science and management. Our objective is to improve awareness of ML among wildfire scientists and managers, as well as illustrate the challenging range of problems in wildfire science available to data scientists. We first present an overview of popular ML approaches used in wildfire science to date, and then review their use in wildfire science within six problem domains: 1) fuels characterization, fire detection, and mapping; 2) fire weather and climate change; 3) fire occurrence, susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6) fire management. We also discuss the advantages and limitations of various ML approaches and identify opportunities for future advances in wildfire science and management within a data science context. We identified 298 relevant publications, where the most frequently used ML methods included random forests, MaxEnt, artificial neural networks, decision trees, support vector machines, and genetic algorithms. There exists opportunities to apply more current ML methods (e.g., deep learning and agent based learning) in wildfire science. However, despite the ability of ML models to learn on their own, expertise in wildfire science is necessary to ensure realistic modelling of fire processes across multiple scales, while the complexity of some ML methods requires sophisticated knowledge for their application. Finally, we stress that the wildfire research and management community plays an active role in providing relevant, high quality data for use by practitioners of ML methods.


Distributionally Robust Chance Constrained Programming with Generative Adversarial Networks (GANs)

arXiv.org Machine Learning

This paper presents a novel deep learning based data-driven optimization method. A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed. GAN is applied to fully extract distributional information from historical data in a nonparametric and unsupervised way without a priori approximation or assumption. Since GAN utilizes deep neural networks, complicated data distributions and modes can be learned, and it can model uncertainty efficiently and accurately. Distributionally robust chance constrained programming takes into consideration ambiguous probability distributions of uncertain parameters. To tackle the computational challenges, sample average approximation method is adopted, and the required data samples are generated by GAN in an end-to-end way through the differentiable networks. The proposed framework is then applied to supply chain optimization under demand uncertainty. The applicability of the proposed approach is illustrated through a county-level case study of a spatially explicit biofuel supply chain in Illinois.


Development, Demonstration, and Validation of Data-driven Compact Diode Models for Circuit Simulation and Analysis

arXiv.org Machine Learning

Compact semiconductor device models are essential for efficiently designing and analyzing large circuits. However, traditional compact model development requires a large amount of manual effort and can span many years. Moreover, inclusion of new physics (eg, radiation effects) into an existing compact model is not trivial and may require redevelopment from scratch. Machine Learning (ML) techniques have the potential to automate and significantly speed up the development of compact models. In addition, ML provides a range of modeling options that can be used to develop hierarchies of compact models tailored to specific circuit design stages. In this paper, we explore three such options: (1) table-based interpolation, (2)Generalized Moving Least-Squares, and (3) feed-forward Deep Neural Networks, to develop compact models for a p-n junction diode. We evaluate the performance of these "data-driven" compact models by (1) comparing their voltage-current characteristics against laboratory data, and (2) building a bridge rectifier circuit using these devices, predicting the circuit's behavior using SPICE-like circuit simulations, and then comparing these predictions against laboratory measurements of the same circuit.