Goto

Collaborating Authors

Results


White Paper Machine Learning in Certified Systems

arXiv.org Artificial Intelligence

Machine Learning (ML) seems to be one of the most promising solution to automate partially or completely some of the complex tasks currently realized by humans, such as driving vehicles, recognizing voice, etc. It is also an opportunity to implement and embed new capabilities out of the reach of classical implementation techniques. However, ML techniques introduce new potential risks. Therefore, they have only been applied in systems where their benefits are considered worth the increase of risk. In practice, ML techniques raise multiple challenges that could prevent their use in systems submitted to certification constraints. But what are the actual challenges? Can they be overcome by selecting appropriate ML techniques, or by adopting new engineering or certification practices? These are some of the questions addressed by the ML Certification 3 Workgroup (WG) set-up by the Institut de Recherche Technologique Saint Exup\'ery de Toulouse (IRT), as part of the DEEL Project.


The Elusive Dream of the Driverless Car

Mother Jones

This story was originally published by Undark and is reproduced here as part of the Climate Desk collaboration. Deep in the Mojave Desert, 60 miles from the city of Barstow, is the Slash X Ranch Cafe, a former ranch where dirt bike riders and ATV adventurers can drink beer and eat burgers with fellow daredevils speeding across the desert. Displayed on a wall alongside trucker caps and taxidermy is a plaque that memorializes the 2004 DARPA Grand Challenge, a 142-mile race whose starting point was at Slash X Ranch Cafe. It was the first race in the world without human drivers. Instead, it featured the fever-dream inventions -- robotic motorcycles, monster Humvees -- of a handful of software engineers who were hellbent on creating fully autonomous vehicles and winning the million-dollar prize offered by the Defense Department's Defense Advanced Research Projects Agency.


The AI Index 2021 Annual Report

arXiv.org Artificial Intelligence

Welcome to the fourth edition of the AI Index Report. This year we significantly expanded the amount of data available in the report, worked with a broader set of external organizations to calibrate our data, and deepened our connections with the Stanford Institute for Human-Centered Artificial Intelligence (HAI). The AI Index Report tracks, collates, distills, and visualizes data related to artificial intelligence. Its mission is to provide unbiased, rigorously vetted, and globally sourced data for policymakers, researchers, executives, journalists, and the general public to develop intuitions about the complex field of AI. The report aims to be the most credible and authoritative source for data and insights about AI in the world.


Away From Silicon Valley, the Military Is the Ideal Customer

NYT > Technology

On a recent afternoon, Mr. Luckey, dressed as if ready for the beach in a Hawaiian-like shirt, shorts and flip-flops, joined other Anduril employees at the company's testing site near Camp Pendleton, a Marine training facility. As the drone took off and swooped between the hills, Mr. Luckey said it could track an object and capture detailed images from seven football fields away. Using many of the artificial intelligence technologies that underpin self-driving cars, Anduril's drones can identify and track vehicles, people and other objects largely on their own. The drones are not armed, but could be useful for guarding bases or reconnaissance. The same sensor technologies that allow the drones to fly on their own could also be used to identify targets on a battlefield.


The Societal Implications of Deep Reinforcement Learning

Journal of Artificial Intelligence Research

Deep Reinforcement Learning (DRL) is an avenue of research in Artificial Intelligence (AI) that has received increasing attention within the research community in recent years, and is beginning to show potential for real-world application. DRL is one of the most promising routes towards developing more autonomous AI systems that interact with and take actions in complex real-world environments, and can more flexibly solve a range of problems for which we may not be able to precisely specify a correct ‘answer’. This could have substantial implications for people’s lives: for example by speeding up automation in various sectors, changing the nature and potential harms of online influence, or introducing new safety risks in physical infrastructure. In this paper, we review recent progress in DRL, discuss how this may introduce novel and pressing issues for society, ethics, and governance, and highlight important avenues for future research to better understand DRL’s societal implications. This article appears in the special track on AI and Society.


The Autonomous-Car Chaos of the 2004 Darpa Grand Challenge

WIRED

When the inquisition required him to drop his study of what the Roman Catholic Church insisted was not a heliocentric solar system, Galileo Galilei turned his energy to the less controversial question of how to stick a telescope onto a helmet. The king of Spain had offered a hefty reward to anyone who could solve the stubborn mystery of how to determine a ship's longitude while at sea: 6,000 ducats up front and another 2,000 per year for life. Galileo thought his headgear, with the telescope fixed over one eye and making its wearer look like a misaligned unicorn, would net him the reward. Determining latitude is easy for any sailor who can pick out the North Star, but finding longitude escaped the citizens of the 17th century, because it required a precise knowledge of time. That's based on a simple principle: Say you set your clock before sailing west from Greenwich.


Aerial Imagery Pile burn detection using Deep Learning: the FLAME dataset

arXiv.org Artificial Intelligence

Wildfires are one of the costliest and deadliest natural disasters in the US, causing damage to millions of hectares of forest resources and threatening the lives of people and animals. Of particular importance are risks to firefighters and operational forces, which highlights the need for leveraging technology to minimize danger to people and property. FLAME (Fire Luminosity Airborne-based Machine learning Evaluation) offers a dataset of aerial images of fires along with methods for fire detection and segmentation which can help firefighters and researchers to develop optimal fire management strategies. This paper provides a fire image dataset collected by drones during a prescribed burning piled detritus in an Arizona pine forest. The dataset includes video recordings and thermal heatmaps captured by infrared cameras. The captured videos and images are annotated and labeled frame-wise to help researchers easily apply their fire detection and modeling algorithms. The paper also highlights solutions to two machine learning problems: (1) Binary classification of video frames based on the presence [and absence] of fire flames. An Artificial Neural Network (ANN) method is developed that achieved a 76% classification accuracy. (2) Fire detection using segmentation methods to precisely determine fire borders. A deep learning method is designed based on the U-Net up-sampling and down-sampling approach to extract a fire mask from the video frames. Our FLAME method approached a precision of 92% and a recall of 84%. Future research will expand the technique for free burning broadcast fire using thermal images.


Developing Future Human-Centered Smart Cities: Critical Analysis of Smart City Security, Interpretability, and Ethical Challenges

arXiv.org Artificial Intelligence

As we make tremendous advances in machine learning and artificial intelligence technosciences, there is a renewed understanding in the AI community that we must ensure that humans being are at the center of our deliberations so that we don't end in technology-induced dystopias. As strongly argued by Green in his book Smart Enough City, the incorporation of technology in city environs does not automatically translate into prosperity, wellbeing, urban livability, or social justice. There is a great need to deliberate on the future of the cities worth living and designing. There are philosophical and ethical questions involved along with various challenges that relate to the security, safety, and interpretability of AI algorithms that will form the technological bedrock of future cities. Several research institutes on human centered AI have been established at top international universities. Globally there are calls for technology to be made more humane and human-compatible. For example, Stuart Russell has a book called Human Compatible AI. The Center for Humane Technology advocates for regulators and technology companies to avoid business models and product features that contribute to social problems such as extremism, polarization, misinformation, and Internet addiction. In this paper, we analyze and explore key challenges including security, robustness, interpretability, and ethical challenges to a successful deployment of AI or ML in human-centric applications, with a particular emphasis on the convergence of these challenges. We provide a detailed review of existing literature on these key challenges and analyze how one of these challenges may lead to others or help in solving other challenges. The paper also advises on the current limitations, pitfalls, and future directions of research in these domains, and how it can fill the current gaps and lead to better solutions.


DARPA CODE Autonomy Engine Demonstrated on Avenger UAS

#artificialintelligence

General Atomics Aeronautical Systems, Inc. (GA-ASI) has demonstrated the DARPA-developed Collaborative Operations in Denied Environment (CODE) autonomy engine on the company's Avenger Unmanned Aircraft System (UAS). CODE was used in order to gain further understanding of cognitive Artificial Intelligence (AI) processing on larger UAS platforms for air-to-air targeting. Using a network-enabled Tactical Targeting Network Technology (TTNT) radio for mesh network mission communications, GA-ASI was able to demonstrate integration of emerging Advanced Tactical Data Links (ATDL), as well as separation between flight and mission critical systems. During the autonomous flight, CODE software controlled the manoeuvring of the Avenger UAS for over two hours without human pilot input. GA-ASI extended the base software behavioural functions for a coordinated air-to-air search with up to six aircraft, using five virtual aircraft for the purposes of the demonstration.


Next Wave Artificial Intelligence: Robust, Explainable, Adaptable, Ethical, and Accountable

arXiv.org Artificial Intelligence

The history of AI has included several "waves" of ideas. The first wave, from the mid-1950s to the 1980s, focused on logic and symbolic hand-encoded representations of knowledge, the foundations of so-called "expert systems". The second wave, starting in the 1990s, focused on statistics and machine learning, in which, instead of hand-programming rules for behavior, programmers constructed "statistical learning algorithms" that could be trained on large datasets. In the most recent wave research in AI has largely focused on deep (i.e., many-layered) neural networks, which are loosely inspired by the brain and trained by "deep learning" methods. However, while deep neural networks have led to many successes and new capabilities in computer vision, speech recognition, language processing, game-playing, and robotics, their potential for broad application remains limited by several factors. A concerning limitation is that even the most successful of today's AI systems suffer from brittleness-they can fail in unexpected ways when faced with situations that differ sufficiently from ones they have been trained on. This lack of robustness also appears in the vulnerability of AI systems to adversarial attacks, in which an adversary can subtly manipulate data in a way to guarantee a specific wrong answer or action from an AI system. AI systems also can absorb biases-based on gender, race, or other factors-from their training data and further magnify these biases in their subsequent decision-making. Taken together, these various limitations have prevented AI systems such as automatic medical diagnosis or autonomous vehicles from being sufficiently trustworthy for wide deployment. The massive proliferation of AI across society will require radically new ideas to yield technology that will not sacrifice our productivity, our quality of life, or our values.