Goto

Collaborating Authors

Results


Artificial intelligence reveals current drugs that may help combat Alzheimer's disease

#artificialintelligence

BOSTON - New treatments for Alzheimer's disease are desperately needed, but numerous clinical trials of investigational drugs have failed to generate promising options. Now a team at Massachusetts General Hospital (MGH) and Harvard Medical School (HMS) has developed an artificial intelligence-based method to screen currently available medications as possible treatments for Alzheimer's disease. The method could represent a rapid and inexpensive way to repurpose existing therapies into new treatments for this progressive, debilitating neurodegenerative condition. Importantly, it could also help reveal new, unexplored targets for therapy by pointing to mechanisms of drug action. "Repurposing FDA-approved drugs for Alzheimer's disease is an attractive idea that can help accelerate the arrival of effective treatment--but unfortunately, even for previously approved drugs, clinical trials require substantial resources, making it impossible to evaluate every drug in patients with Alzheimer's disease," explains Artem Sokolov, PhD, director of Informatics and Modeling at the Laboratory of Systems Pharmacology at HMS. "We therefore built a framework for prioritizing drugs, helping clinical studies to focus on the most promising ones."


AI reveals current drugs that may help combat Alzheimer's disease

#artificialintelligence

New treatments for Alzheimer's disease are desperately needed, but numerous clinical trials of investigational drugs have failed to generate promising options. Now a team at Massachusetts General Hospital (MGH) and Harvard Medical School (HMS) has developed an artificial intelligence based method to screen currently available medications as possible treatments for Alzheimer's disease. The method could represent a rapid and inexpensive way to repurpose existing therapies into new treatments for this progressive, debilitating neurodegenerative condition. Importantly, it could also help reveal new, unexplored targets for therapy by pointing to mechanisms of drug action. "Repurposing FDA-approved drugs for Alzheimer's disease is an attractive idea that can help accelerate the arrival of effective treatment - but unfortunately, even for previously approved drugs, clinical trials require substantial resources, making it impossible to evaluate every drug in patients with Alzheimer's disease," explains Artem Sokolov, PhD, director of Informatics and Modeling at the Laboratory of Systems Pharmacology at HMS. "We therefore built a framework for prioritizing drugs, helping clinical studies to focus on the most promising ones."


AI platform says Olumiant could be repurposed for Alzheimer's

#artificialintelligence

With so many novel drug candidates for Alzheimer's disease failing in clinical development, researchers in the US have started using artificial intelligence (AI) to screen already-approved therapies for activity against the neurodegenerative disorder. A team based at Massachusetts General Hospital and Harvard Medical School has come up with an AI algorithm โ€“ called DRIAD (Drug Repurposing In Alzheimer's Disease) โ€“ that it hopes will not only find treatments but also tease out new therapeutic targets. The AI uses machine learning to measure what happens to human brain neural cells when treated with a drug, and could be "a more rapid and less expensive option" than clinical trials of novel therapeutics, according to the researchers. In the journal Nature Communications, Harvard informatics specialist Artem Sokolov and colleagues report that early studies with the platform based on 80 approved drugs suggest Eli Lilly's Olumiant (baricitinib) as a possible candidate for repurposing as an AD therapy. It's not the first time that AI has suggested a new role for Olumiant, which is approved as an arthritis drug.


Artificial intelligence reveals current drugs that may help combat Alzheimer's disease

#artificialintelligence

New treatments for Alzheimer's disease are desperately needed, but numerous clinical trials of investigational drugs have failed to generate promising options. Now a team at Massachusetts General Hospital (MGH) and Harvard Medical School (HMS) has developed an artificial intelligence-based method to screen currently available medications as possible treatments for Alzheimer's disease. The method could represent a rapid and inexpensive way to repurpose existing therapies into new treatments for this progressive, debilitating neurodegenerative condition. Importantly, it could also help reveal new, unexplored targets for therapy by pointing to mechanisms of drug action. "Repurposing FDA-approved drugs for Alzheimer's disease is an attractive idea that can help accelerate the arrival of effective treatment--but unfortunately, even for previously approved drugs, clinical trials require substantial resources, making it impossible to evaluate every drug in patients with Alzheimer's disease," explains Artem Sokolov, Ph.D., director of Informatics and Modeling at the Laboratory of Systems Pharmacology at HMS. "We therefore built a framework for prioritizing drugs, helping clinical studies to focus on the most promising ones."


Could 'young' blood stop us getting old?

The Guardian

In the early 2000s a group of scientists at Stanford University, California, revived a grisly procedure used in the 1950s known as parabiosis. They paired living mice, young with old, peeled back their skin and stitched together their sides so the two animals shared the same blood circulatory system. A month later, they found signs of rejuvenation in the muscles and livers of the old mice. The findings, published in 2005, turned the minds of scientists, entrepreneurs and the public to the potential of young blood to rejuvenate ageing people. By 2016, enough interest had grown to prompt a US-based startup called Ambrosia to start offering pricey infusions of young plasma โ€“ the cell-free component of blood.