Goto

Collaborating Authors

Results


Adversarial Framework with Certified Robustness for Time-Series Domain via Statistical Features

Journal of Artificial Intelligence Research

Time-series data arises in many real-world applications (e.g., mobile health) and deep neural networks (DNNs) have shown great success in solving them. Despite their success, little is known about their robustness to adversarial attacks. In this paper, we propose a novel adversarial framework referred to as Time-Series Attacks via STATistical Features (TSA-STAT). To address the unique challenges of time-series domain, TSA-STAT employs constraints on statistical features of the time-series data to construct adversarial examples. Optimized polynomial transformations are used to create attacks that are more effective (in terms of successfully fooling DNNs) than those based on additive perturbations. We also provide certified bounds on the norm of the statistical features for constructing adversarial examples. Our experiments on diverse real-world benchmark datasets show the effectiveness of TSA-STAT in fooling DNNs for time-series domain and in improving their robustness.


Human rights, democracy, and the rule of law assurance framework for AI systems: A proposal

arXiv.org Artificial Intelligence

Following on from the publication of its Feasibility Study in December 2020, the Council of Europe's Ad Hoc Committee on Artificial Intelligence (CAHAI) and its subgroups initiated efforts to formulate and draft its Possible Elements of a Legal Framework on Artificial Intelligence, based on the Council of Europe's standards on human rights, democracy, and the rule of law. This document was ultimately adopted by the CAHAI plenary in December 2021. To support this effort, The Alan Turing Institute undertook a programme of research that explored the governance processes and practical tools needed to operationalise the integration of human right due diligence with the assurance of trustworthy AI innovation practices. The resulting framework was completed and submitted to the Council of Europe in September 2021. It presents an end-to-end approach to the assurance of AI project lifecycles that integrates context-based risk analysis and appropriate stakeholder engagement with comprehensive impact assessment, and transparent risk management, impact mitigation, and innovation assurance practices. Taken together, these interlocking processes constitute a Human Rights, Democracy and the Rule of Law Assurance Framework (HUDERAF). The HUDERAF combines the procedural requirements for principles-based human rights due diligence with the governance mechanisms needed to set up technical and socio-technical guardrails for responsible and trustworthy AI innovation practices. Its purpose is to provide an accessible and user-friendly set of mechanisms for facilitating compliance with a binding legal framework on artificial intelligence, based on the Council of Europe's standards on human rights, democracy, and the rule of law, and to ensure that AI innovation projects are carried out with appropriate levels of public accountability, transparency, and democratic governance.


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies

arXiv.org Artificial Intelligence

As AI systems demonstrate increasingly strong predictive performance, their adoption has grown in numerous domains. However, in high-stakes domains such as criminal justice and healthcare, full automation is often not desirable due to safety, ethical, and legal concerns, yet fully manual approaches can be inaccurate and time consuming. As a result, there is growing interest in the research community to augment human decision making with AI assistance. Besides developing AI technologies for this purpose, the emerging field of human-AI decision making must embrace empirical approaches to form a foundational understanding of how humans interact and work with AI to make decisions. To invite and help structure research efforts towards a science of understanding and improving human-AI decision making, we survey recent literature of empirical human-subject studies on this topic. We summarize the study design choices made in over 100 papers in three important aspects: (1) decision tasks, (2) AI models and AI assistance elements, and (3) evaluation metrics. For each aspect, we summarize current trends, discuss gaps in current practices of the field, and make a list of recommendations for future research. Our survey highlights the need to develop common frameworks to account for the design and research spaces of human-AI decision making, so that researchers can make rigorous choices in study design, and the research community can build on each other's work and produce generalizable scientific knowledge. We also hope this survey will serve as a bridge for HCI and AI communities to work together to mutually shape the empirical science and computational technologies for human-AI decision making.


Artificial Intellgence -- Application in Life Sciences and Beyond. The Upper Rhine Artificial Intelligence Symposium UR-AI 2021

arXiv.org Artificial Intelligence

The TriRhenaTech alliance presents the accepted papers of the 'Upper-Rhine Artificial Intelligence Symposium' held on October 27th 2021 in Kaiserslautern, Germany. Topics of the conference are applications of Artificial Intellgence in life sciences, intelligent systems, industry 4.0, mobility and others. The TriRhenaTech alliance is a network of universities in the Upper-Rhine Trinational Metropolitan Region comprising of the German universities of applied sciences in Furtwangen, Kaiserslautern, Karlsruhe, Offenburg and Trier, the Baden-Wuerttemberg Cooperative State University Loerrach, the French university network Alsace Tech (comprised of 14 'grandes \'ecoles' in the fields of engineering, architecture and management) and the University of Applied Sciences and Arts Northwestern Switzerland. The alliance's common goal is to reinforce the transfer of knowledge, research, and technology, as well as the cross-border mobility of students.


An overview of event extraction and its applications

arXiv.org Artificial Intelligence

With the rapid development of information technology, online platforms have produced enormous text resources. As a particular form of Information Extraction (IE), Event Extraction (EE) has gained increasing popularity due to its ability to automatically extract events from human language. However, there are limited literature surveys on event extraction. Existing review works either spend much effort describing the details of various approaches or focus on a particular field. This study provides a comprehensive overview of the state-of-the-art event extraction methods and their applications from text, including closed-domain and open-domain event extraction. A trait of this survey is that it provides an overview in moderate complexity, avoiding involving too many details of particular approaches. This study focuses on discussing the common characters, application fields, advantages, and disadvantages of representative works, ignoring the specificities of individual approaches. Finally, we summarize the common issues, current solutions, and future research directions. We hope this work could help researchers and practitioners obtain a quick overview of recent event extraction.


Trustworthy AI: From Principles to Practices

arXiv.org Artificial Intelligence

Fast developing artificial intelligence (AI) technology has enabled various applied systems deployed in the real world, impacting people's everyday lives. However, many current AI systems were found vulnerable to imperceptible attacks, biased against underrepresented groups, lacking in user privacy protection, etc., which not only degrades user experience but erodes the society's trust in all AI systems. In this review, we strive to provide AI practitioners a comprehensive guide towards building trustworthy AI systems. We first introduce the theoretical framework of important aspects of AI trustworthiness, including robustness, generalization, explainability, transparency, reproducibility, fairness, privacy preservation, alignment with human values, and accountability. We then survey leading approaches in these aspects in the industry. To unify the current fragmented approaches towards trustworthy AI, we propose a systematic approach that considers the entire lifecycle of AI systems, ranging from data acquisition to model development, to development and deployment, finally to continuous monitoring and governance. In this framework, we offer concrete action items to practitioners and societal stakeholders (e.g., researchers and regulators) to improve AI trustworthiness. Finally, we identify key opportunities and challenges in the future development of trustworthy AI systems, where we identify the need for paradigm shift towards comprehensive trustworthy AI systems.


Sequential Modelling with Applications to Music Recommendation, Fact-Checking, and Speed Reading

arXiv.org Artificial Intelligence

Sequential modelling entails making sense of sequential data, which naturally occurs in a wide array of domains. One example is systems that interact with users, log user actions and behaviour, and make recommendations of items of potential interest to users on the basis of their previous interactions. In such cases, the sequential order of user interactions is often indicative of what the user is interested in next. Similarly, for systems that automatically infer the semantics of text, capturing the sequential order of words in a sentence is essential, as even a slight re-ordering could significantly alter its original meaning. This thesis makes methodological contributions and new investigations of sequential modelling for the specific application areas of systems that recommend music tracks to listeners and systems that process text semantics in order to automatically fact-check claims, or "speed read" text for efficient further classification.


Reports of the Workshops Held at the 2021 AAAI Conference on Artificial Intelligence

Interactive AI Magazine

The Workshop Program of the Association for the Advancement of Artificial Intelligence's Thirty-Fifth Conference on Artificial Intelligence was held virtually from February 8-9, 2021. There were twenty-six workshops in the program: Affective Content Analysis, AI for Behavior Change, AI for Urban Mobility, Artificial Intelligence Safety, Combating Online Hostile Posts in Regional Languages during Emergency Situations, Commonsense Knowledge Graphs, Content Authoring and Design, Deep Learning on Graphs: Methods and Applications, Designing AI for Telehealth, 9th Dialog System Technology Challenge, Explainable Agency in Artificial Intelligence, Graphs and More Complex Structures for Learning and Reasoning, 5th International Workshop on Health Intelligence, Hybrid Artificial Intelligence, Imagining Post-COVID Education with AI, Knowledge Discovery from Unstructured Data in Financial Services, Learning Network Architecture During Training, Meta-Learning and Co-Hosted Competition, ...


20 AI Influencers You NEED To Be Following - The AI Journal

#artificialintelligence

Rachel earned her math PhD at Duke University. She is a popular writer and keynote speaker, on topics of data ethics, AI accessibility, and bias in machine learning. Her writing has been read by nearly a million people; has been translated into Chinese, Spanish, Korean, & Portuguese; and has made the front page of Hacker News 9x.