Goto

Collaborating Authors

Results


A Survey of Opponent Modeling in Adversarial Domains

Journal of Artificial Intelligence Research

Opponent modeling is the ability to use prior knowledge and observations in order to predict the behavior of an opponent. This survey presents a comprehensive overview of existing opponent modeling techniques for adversarial domains, many of which must address stochastic, continuous, or concurrent actions, and sparse, partially observable payoff structures. We discuss all the components of opponent modeling systems, including feature extraction, learning algorithms, and strategy abstractions. These discussions lead us to propose a new form of analysis for describing and predicting the evolution of game states over time. We then introduce a new framework that facilitates method comparison, analyze a representative selection of techniques using the proposed framework, and highlight common trends among recently proposed methods. Finally, we list several open problems and discuss future research directions inspired by AI research on opponent modeling and related research in other disciplines.


Forecasting: theory and practice

arXiv.org Machine Learning

Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.


Visual Learning-based Planning for Continuous High-Dimensional POMDPs

arXiv.org Artificial Intelligence

The Partially Observable Markov Decision Process (POMDP) is a powerful framework for capturing decision-making problems that involve state and transition uncertainty. However, most current POMDP planners cannot effectively handle very high-dimensional observations they often encounter in the real world (e.g. image observations in robotic domains). In this work, we propose Visual Tree Search (VTS), a learning and planning procedure that combines generative models learned offline with online model-based POMDP planning. VTS bridges offline model training and online planning by utilizing a set of deep generative observation models to predict and evaluate the likelihood of image observations in a Monte Carlo tree search planner. We show that VTS is robust to different observation noises and, since it utilizes online, model-based planning, can adapt to different reward structures without the need to re-train. This new approach outperforms a baseline state-of-the-art on-policy planning algorithm while using significantly less offline training time.


Semantic Sensing and Planning for Human-Robot Collaboration in Uncertain Environments

arXiv.org Artificial Intelligence

Autonomous robots can benefit greatly from human-provided semantic characterizations of uncertain task environments and states. However, the development of integrated strategies which let robots model, communicate, and act on such soft data remains challenging. Here, a framework is presented for active semantic sensing and planning in human-robot teams which addresses these gaps by formally combining the benefits of online sampling-based POMDP policies, multi-modal semantic interaction, and Bayesian data fusion. This approach lets humans opportunistically impose model structure and extend the range of semantic soft data in uncertain environments by sketching and labeling arbitrary landmarks across the environment. Dynamic updating of the environment while searching for a mobile target allows robotic agents to actively query humans for novel and relevant semantic data, thereby improving beliefs of unknown environments and target states for improved online planning. Target search simulations show significant improvements in time and belief state estimates required for interception versus conventional planning based solely on robotic sensing. Human subject studies demonstrate a average doubling in dynamic target capture rate compared to the lone robot case, employing reasoning over a range of user characteristics and interaction modalities. Video of interaction can be found at https://youtu.be/Eh-82ZJ1o4I.


Goal Agnostic Planning using Maximum Likelihood Paths in Hypergraph World Models

arXiv.org Artificial Intelligence

In this paper, we present a hypergraph--based machine learning algorithm, a datastructure--driven maintenance method, and a planning algorithm based on a probabilistic application of Dijkstra's algorithm. Together, these form a goal agnostic automated planning engine for an autonomous learning agent which incorporates beneficial properties of both classical Machine Learning and traditional Artificial Intelligence. We prove that the algorithm determines optimal solutions within the problem space, mathematically bound learning performance, and supply a mathematical model analyzing system state progression through time yielding explicit predictions for learning curves, goal achievement rates, and response to abstractions and uncertainty. To validate performance, we exhibit results from applying the agent to three archetypal planning problems, including composite hierarchical domains, and highlight empirical findings which illustrate properties elucidated in the analysis.


Learning Cooperation and Online Planning Through Simulation and Graph Convolutional Network

arXiv.org Artificial Intelligence

Multi-agent Markov Decision Process (MMDP) has been an effective way of modelling sequential decision making algorithms for multi-agent cooperative environments. A number of algorithms based on centralized and decentralized planning have been developed in this domain. However, dynamically changing environment, coupled with exponential size of the state and joint action space, make it difficult for these algorithms to provide both efficiency and scalability. Recently, Centralized planning algorithm FV-MCTS-MP and decentralized planning algorithm \textit{Alternate maximization with Behavioural Cloning} (ABC) have achieved notable performance in solving MMDPs. However, they are not capable of adapting to dynamically changing environments and accounting for the lack of communication among agents, respectively. Against this background, we introduce a simulation based online planning algorithm, that we call SiCLOP, for multi-agent cooperative environments. Specifically, SiCLOP tailors Monte Carlo Tree Search (MCTS) and uses Coordination Graph (CG) and Graph Neural Network (GCN) to learn cooperation and provides real time solution of a MMDP problem. It also improves scalability through an effective pruning of action space. Additionally, unlike FV-MCTS-MP and ABC, SiCLOP supports transfer learning, which enables learned agents to operate in different environments. We also provide theoretical discussion about the convergence property of our algorithm within the context of multi-agent settings. Finally, our extensive empirical results show that SiCLOP significantly outperforms the state-of-the-art online planning algorithms.


Optimal Path Planning of Autonomous Marine Vehicles in Stochastic Dynamic Ocean Flows using a GPU-Accelerated Algorithm

arXiv.org Artificial Intelligence

Autonomous marine vehicles play an essential role in many ocean science and engineering applications. Planning time and energy optimal paths for these vehicles to navigate in stochastic dynamic ocean environments is essential to reduce operational costs. In some missions, they must also harvest solar, wind, or wave energy (modeled as a stochastic scalar field) and move in optimal paths that minimize net energy consumption. Markov Decision Processes (MDPs) provide a natural framework for sequential decision-making for robotic agents in such environments. However, building a realistic model and solving the modeled MDP becomes computationally expensive in large-scale real-time applications, warranting the need for parallel algorithms and efficient implementation. In the present work, we introduce an efficient end-to-end GPU-accelerated algorithm that (i) builds the MDP model (computing transition probabilities and expected one-step rewards); and (ii) solves the MDP to compute an optimal policy. We develop methodical and algorithmic solutions to overcome the limited global memory of GPUs by (i) using a dynamic reduced-order representation of the ocean flows, (ii) leveraging the sparse nature of the state transition probability matrix, (iii) introducing a neighbouring sub-grid concept and (iv) proving that it is sufficient to use only the stochastic scalar field's mean to compute the expected one-step rewards for missions involving energy harvesting from the environment; thereby saving memory and reducing the computational effort. We demonstrate the algorithm on a simulated stochastic dynamic environment and highlight that it builds the MDP model and computes the optimal policy 600-1000x faster than conventional CPU implementations, making it suitable for real-time use.


Scheduling in Parallel Finite Buffer Systems: Optimal Decisions under Delayed Feedback

arXiv.org Artificial Intelligence

Scheduling decisions in parallel queuing systems arise as a fundamental problem, underlying the dimensioning and operation of many computing and communication systems, such as job routing in data center clusters, multipath communication, and Big Data systems. In essence, the scheduler maps each arriving job to one of the possibly heterogeneous servers while aiming at an optimization goal such as load balancing, low average delay or low loss rate. One main difficulty in finding optimal scheduling decisions here is that the scheduler only partially observes the impact of its decisions, e.g., through the delayed acknowledgements of the served jobs. In this paper, we provide a partially observable (PO) model that captures the scheduling decisions in parallel queuing systems under limited information of delayed acknowledgements. We present a simulation model for this PO system to find a near-optimal scheduling policy in real-time using a scalable Monte Carlo tree search algorithm. We numerically show that the resulting policy outperforms other limited information scheduling strategies such as variants of Join-the-Most-Observations and has comparable performance to full information strategies like: Join-the-Shortest-Queue, Join-the- Shortest-Queue(d) and Shortest-Expected-Delay. Finally, we show how our approach can optimise the real-time parallel processing by using network data provided by Kaggle.


Simplified Belief-Dependent Reward MCTS Planning with Guaranteed Tree Consistency

arXiv.org Artificial Intelligence

Partially Observable Markov Decision Processes (POMDPs) are notoriously hard to solve. Most advanced state-of-the-art online solvers leverage ideas of Monte Carlo Tree Search (MCTS). These solvers rapidly converge to the most promising branches of the belief tree, avoiding the suboptimal sections. Most of these algorithms are designed to utilize straightforward access to the state reward and assume the belief-dependent reward is nothing but expectation over the state reward. Thus, they are inapplicable to a more general and essential setting of belief-dependent rewards. One example of such reward is differential entropy approximated using a set of weighted particles of the belief. Such an information-theoretic reward introduces a significant computational burden. In this paper, we embed the paradigm of simplification into the MCTS algorithm. In particular, we present Simplified Information-Theoretic Particle Filter Tree (SITH-PFT), a novel variant to the MCTS algorithm that considers information-theoretic rewards but avoids the need to calculate them completely. We replace the costly calculation of information-theoretic rewards with adaptive upper and lower bounds. These bounds are easy to calculate and tightened only by the demand of our algorithm. Crucially, we guarantee precisely the same belief tree and solution that would be obtained by MCTS, which explicitly calculates the original information-theoretic rewards. Our approach is general; namely, any converging to the reward bounds can be easily plugged-in to achieve substantial speedup without any loss in performance.


Explainable Autonomous Robots: A Survey and Perspective

arXiv.org Artificial Intelligence

It is commonly claimed that AI will replace most manual labor in the future; however, is this really the case? AI technologies do have higher image recognition accuracy compared to humans in some limited contexts, and have consistently outperformed humans in classical games such as Go and chess. Nonetheless, we believe that even advanced future developments based on current technology will not lead to robots replacing humans. AI systems' fundamental lack of ability to communicate naturally and effectively with humans is among the most significant reasons that they cannot replace human labor. Here, one may believe that such communication could be achieved via the development of natural language processing (NLP) technology [4]; however, NLP technologies are systems for estimating the content of human statements and their meanings; they do not constitute communication. That is, humans do not feel that robots using such systems truly understand and respond to them appropriately. Therefore, if effective communication is not achieved, robots will continue to function only as tools to assist humans. Advancements improving the accuracy or effectiveness of various specific tasks do not indicate that robots are equivalent to human beings. Under this scenario, how can we enable robots to communicate with humans?