Collaborating Authors


Geographic Differential Privacy for Mobile Crowd Coverage Maximization

AAAI Conferences

For real-world mobile applications such as location-based advertising and spatial crowdsourcing, a key to success is targeting mobile users that can maximally cover certain locations in a future period. To find an optimal group of users, existing methods often require information about users' mobility history, which may cause privacy breaches. In this paper, we propose a method to maximize mobile crowd's future location coverage under a guaranteed location privacy protection scheme. In our approach, users only need to upload one of their frequently visited locations, and more importantly, the uploaded location is obfuscated using a geographic differential privacy policy. We propose both analytic and practical solutions to this problem. Experiments on real user mobility datasets show that our method significantly outperforms the state-of-the-art geographic differential privacy methods by achieving a higher coverage under the same level of privacy protection.

Discovering Spammers in Social Networks

AAAI Conferences

As the popularity of the social media increases, as evidenced in Twitter, Facebook and China's Renren, spamming activities also picked up in numbers and variety. On social network sites, spammers often disguise themselves by creating fake accounts and hijacking normal users' accounts for personal gains. Different from the spammers in traditional systems such as SMS and email, spammers in social media behave like normal users and they continue to change their spamming strategies to fool anti spamming systems. However, due to the privacy and resource concerns, many social media websites cannot fully monitor all the contents of users, making many of the previous approaches, such as topology-based and content-classification-based methods, infeasible to use. In this paper, we propose a novel method for spammer detection in social networks that exploits both social activities as well as users' social relations in an innovative and highly scalable manner. The proposed method detects spammers following collective activities based on users' social actions and relations. We have empirically tested our method on data from, which is the largest social network in China, and demonstrated that our new method can improve the detection performance significantly.