Goto

Collaborating Authors

Results


AI researchers detail obstacles to data sharing in Africa

#artificialintelligence

AI researchers say data sharing is a key part of economic growth in Africa but that it faces a number of common obstacles, including the threat of data colonialism. The African data market is expected to grow steadily in the coming years, and the African Data Centre trade organization predicts the African data market will need hundreds of new datacenters to meet demand in the coming decade. In a paper titled "Narratives and Counternarratives on Data Sharing in Africa," the research team lays out structural problems including but limited to financial or infrastructure problems. Coauthors argue that failure to consider ethical concerns associated with those obstacles could cause irreparable harm. "Currently, a significant proportion of Africa's digital infrastructure is controlled by Western technology powers, such as Amazon, Google, Facebook, and Uber," the paper reads.


Mapping the global threat of land subsidence

Science

Subsidence, the lowering of Earth's land surface, is a potentially destructive hazard that can be caused by a wide range of natural or anthropogenic triggers but mainly results from solid or fluid mobilization underground. Subsidence due to groundwater depletion ([ 1 ][1]) is a slow and gradual process that develops on large time scales (months to years), producing progressive loss of land elevation (centimeters to decimeters per year) typically over very large areas (tens to thousands of square kilometers) and variably affects urban and agricultural areas worldwide. Subsidence permanently reduces aquifer-system storage capacity, causes earth fissures, damages buildings and civil infrastructure, and increases flood susceptibility and risk. During the next decades, global population and economic growth will continue to increase groundwater demand and accompanying groundwater depletion ([ 2 ][2]) and, when exacerbated by droughts ([ 3 ][3]), will probably increase land subsidence occurrence and related damages or impacts. To raise awareness and inform decision-making, we evaluate potential global subsidence due to groundwater depletion, a key first step toward formulating effective land-subsidence policies that are lacking in most countries worldwide. A large-scale systematic literature review reveals that during the past century, land subsidence due to groundwater depletion occurred at 200 locations in 34 countries [see supplementary materials (SM)]. However, subsidence extent is only known for one-third of these records, information on the impacts is scarce, and mitigation measures were implemented only in a few locations. In China, widespread subsidence affects cities developed in the main sedimentary basins. In Indonesia, coastal subsidence in Jakarta is so severe that government authorities are planning to move the capital to the island of Borneo. In Japan, subsidence affected several cities during the 20th century, including more than 4 m of subsidence in Tokyo, before groundwater management practices mitigated further subsidence. Iran currently hosts some of the fastest-sinking cities in the world (25 cm year--1) because of unregulated groundwater pumping. In Europe, the greatest impact of subsidence occurs in the Netherlands, where subsidence is primarily responsible for placing 25% of the country below the mean sea level and increasing the flooding risk. Subsidence in the Po River Plain in Italy started during the second half of the 20th century and currently threatens 30% of the Italian population, contributing to recurrent coastal flooding during extreme high tides in Venice. In North America, intense groundwater depletion triggers subsidence from California's Central Valley, with as much as 9 m of subsidence in the past century, to the Atlantic and Gulf of Mexico coastal plains in the United States, where subsidence is increasing flooding risk. In México, subsidence rates are among the highest worldwide (as much as 30 cm year-1), affecting small structurally controlled intermontane basins where the main urban centers developed, causing an important but unaccounted economic impact. Spatial analysis of subsidence locations identified in our global database (see SM) reveals that subsidence has preferentially occurred in very flat areas where unconsolidated sediments accumulated in alluvial basins or coastal plains, and where urban or agricultural areas developed in temperate or arid climates characterized by prolonged dry periods. Land subsidence has generally occurred in water-stressed basins, where the combination of groundwater withdrawal and natural groundwater discharge outpaced groundwater recharge, resulting in groundwater storage losses, groundwater depletion, and compaction of susceptible aquifer systems. In the affected basins, land subsidence mainly occurred in highly populated areas, with half of documented occurrences in areas susceptible to flooding. In coastal zones, the combined effects of absolute sea-level rise and land subsidence contribute to relative sea-level rise ([ 4 ][4]). The contribution from land subsidence may exceed the contribution from absolute sea-level rise by a factor of 10 or more and could be especially critical for 21% of the geographic locations identified in our database, where land elevation is less than 1 m above the mean sea level. On the basis of the spatial analysis findings, a global model is proposed to combine the main variables influencing subsidence to identify environmental settings favoring land subsidence and the anthropogenic factors leading to groundwater depletion (see SM). Statistical analyses of lithology, land-surface slope, land cover, and Koppen-Geiger climate classes are used to predict global subsidence susceptibility at a spatial resolution of 1 km2. The probability of groundwater depletion is estimated by identifying urban and irrigated areas suffering water stress and where groundwater demand is high. The analyses do not consider subsidence magnitude and rate, owing to the lack of this information at a global scale. Hence, the combination of subsidence susceptibility and the probability of groundwater depletion is used to predict a “proxy” of subsidence hazard, which permits identification of exposed areas where the probability of land subsidence occurrence is high or very high. Even though these results do not necessarily translate to direct impacts or damages, they are useful for identifying potential subsidence areas where further local-scale analysis is necessary. T he comparison of our model predictions with an independent validation dataset reveals a 94% capability to distinguish between subsidence and nonsubsidence areas, according to the value of the area under the receiver operating characteristic curve (see SM). The global exposure to potential subsidence is evaluated by calculating the number of inhabitants living in potential subsidence areas, i.e., subsidence hazard proxy, and the equivalent gross domestic product (GDP). T his “proxy” of exposed assets is calculated assuming that GDP per capita is homogeneous within each country. Finally, the evolution of potential global subsidence and the related exposure is predicted for 2040 for a global change scenario based on steady population growth and increasing greenhouse gas emissions (Shared Socioeconomic Pathways 2, Representative Concentration Pathway 8.5), which accounts for the greatest sea-level rise projections. ![Figure][5] Potential global subsidence The color scale indicates the probability intervals classified from very low (VL) to very high (VH), for every 30-arcsec resolution pixel (1 km by 1 km at the Equator). The white hatched polygons indicate countries where groundwater data is unavailable, and the potential subsidence only includes information on the susceptibility. See maps of other regions in supplementary materials. GRAPHIC: N. DESAI/ SCIENCE Our results suggest that potential subsidence threatens 12 million km2 (8%) of the global land surface with a probability greater than 50% (MH to VH in the figure). Potential subsidence areas are concentrated in and near densely urban and irrigated areas with high water stress and high groundwater demand, overlying some of the largest and most depleted aquifer systems ([ 5 ][6]) in Asia (e.g., North China Plain) and North America (e.g., Gulf of Mexico coastal plain); coastal and river delta areas worldwide (e.g., Vietnam, Egypt, or the Netherlands); and inland sedimentary basins of México, Iran, and the Mediterranean countries. Potential subsidence is lower in Africa, Australia, and South America, owing to the lower groundwater depletion ([ 6 ][7]). In central Africa, potential subsidence only includes information on the susceptibility, as groundwater depletion is unknown. In this region, subsidence susceptibility (see fig. S6) could be useful to prevent subsidence impacts on developing cities that during the next decades could rely more on the available groundwater resources. To evaluate the exposure to potential subsidence, we focus on areas where the potential subsidence probability is high or very high (see the figure). The cumulative potential subsidence area amounts to 2.2 million km2, or 1.6% of the land; includes 1.2 billion inhabitants, or 19% of the global population; and has an exposed GDP of US$ 8.19 trillion, or 12% of the global GDP. Hi gh-income countries account for 62% of the global exposed GDP but only 11% of the global exposed population, whereas low-income countries account for 54% of the global exposed population and 12% of the global exposed GDP. It is expected that the capability of low-income countries to implement the political, regulatory, and socioeconomic measures necessary to prevent and mitigate subsidence impact will be less than that for high-income countries. Potential subsidence threatens 484 million inhabitants living in flood-prone areas, 75% of whom live in fluvial areas and 25% of whom live near the coast. This number of threatened inhabitants corresponds to 50% of the global population exposed to flooding hazards according to previous estimates ([ 7 ][8]), demonstrating the importance of considering potential subsidence in global flooding risk analyses. Most of the global population exposed to potential subsidence live in Asia (86%), which is about 10 times the combined exposed population of North America and Europe (9%). The results indicate that 97% of the exposed global population is concentrated in 30 countries (see SM). India and China share the top two rankings of potential subsidence in terms of spatial extent and exposed population. Egypt and the Netherlands have the largest populations living in potential subsidence areas that are below the mean sea level. The greatest population densities in potential subsidence areas occur in Egypt and Indonesia, whereas the relative exposure per country, measured as the exposed population normalized by the total population, is greater than 30% for Egypt, Bangladesh, Netherlands, and Italy. The United States ranks first in terms of GDP exposed to potential subsidence, owing to its high GDP per capita. Combination of the aforementioned metrics permits derivation of a potential subsidence index ranking (see SM). Seven of the first ten ranked countries have the greatest subsidence impact, accounting for the greatest amount of reported damages (Netherlands, China, USA, Japan, Indonesia, México and Italy). During this century, climate change will cause serious impacts on the world's water resources through sea-level rise, more frequent and severe floods and droughts, changes in the mean value and mode of precipitation (rain versus snow), and increased evapotranspiration. Prolonged droughts will decrease groundwater recharge and increase groundwater depletion, intensifying subsidence. The global potential subsidence is predicted for 2040 using the same subsidence metrics and available global projections of water stress, water demand variations, climate, and population (see SM). Although predicted potential subsidence areas increase only by 7% globally, the threatened population is predicted to rise by 30%, affecting 1.6 billion inhabitants, 635 million of whom will be living in flood-prone areas. These changes will not be homogeneous. Between 2010 and 2040, the predicted population exposed to potential subsidence increases more than 80% in the Philippines, Iraq, Indonesia, México, Israel, Netherlands, Algeria, and Bangladesh. The increase will be moderate, less than 30%, for China, the United States, Italy, and Iran. Potential subsidence is forecasted to decrease in Japan and Germany, owing to effective groundwater management policies and population declines. Finally, potential subsidence is predicted to emerge in high-latitude northern countries like Canada and to increase in extent in Russia or Hungary, where climate change will favor longer dry seasons. Further advancements in the global evaluation of subsidence can be made when a global historical database on subsidence rate, magnitude, and extent has been compiled, which could be largely sourced from continental monitoring of surface displacements using satellite radar imagery ([ 8 ][9]). Widespread continuous monitoring of subsidence will permit better evaluation of the potential impact of land subsidence, especially in countries like Indonesia, México, and Iran, where local studies revealed the highest subsidence rates worldwide, but the national dimension of subsidence is still unknown. Further research also is necessary to evaluate the cost of damage caused by current and historical subsidence worldwide. The combination of damage information with hazard estimates will permit improved assessments of potential loss and design of cost-effective countermeasures. Presently, annual subsidence costs are only published for China (US$ 1.5 billion) and the Netherlands (US$ 4.8 billion) ([ 9 ][10]). The greater subsidence costs in the Netherlands owe to the exposed population below the mean sea level and the large investments made to prevent flooding. Our model, which does not yet consider mitigation measures, likely overestimates potential subsidence exposure in the Netherlands and Japan, where groundwater management has effectively controlled subsidence over the past decades ([ 10 ][11]). Our results identify 1596 major cities, or about 22% of the world's 7343 major cities that are in potential subsidence areas, with 57% of these cities also located in flood-prone areas. Moreover, subsidence threatens 15 of the 20 major coastal cities ranked with the highest flood risk worldwide ([ 11 ][12]), where potential subsidence can help delimit areas in which flooding risk could be increased and mitigation measures are necessary. Overall, potential global subsidence results can be useful to better define the spatial extent of poorly documented subsidence occurrences, discover unknown subsiding areas, prevent potential subsidence impacts wherever groundwater depletion occurs, and better identify areas where subsidence could increase the flooding risk. In any of these scenarios, an effective land-subsidence policy should include systematic monitoring and modeling of exposed areas, evaluation of potential damages, and cost-benefit analyses permitting implementation of adequate mitigation or adaptation measures. These measures should consider groundwater regulation and strategic long-term measures, such as the development of alternative water supplies and the protection and (or) enhancement of natural or artificial recharge of aquifers. Considering that the potential subsidence may affect 635 million inhabitants living in flood-prone areas in 2040, it is of prime importance that potential subsidence is quantified and systematically included in flood risk analyses and related mitigation strategies. [science.sciencemag.org/content/371/6524/34/suppl/DC1][13] 1. [↵][14]1. D. L. Galloway, 2. T. J. Burbey , Hydrogeol. J. 19, 1459 (2011). [OpenUrl][15] 2. [↵][16]1. J. S. Famiglietti , Nat. Clim. Chang. 4, 945 (2014). [OpenUrl][17] 3. [↵][18]1. K. E. Trenberth , Clim. Res. 47, 123 (2011). [OpenUrl][19][CrossRef][20][Web of Science][21] 4. [↵][22]1. J. P. M. Syvitski et al ., Nat. Geosci. 2, 681 (2009). [OpenUrl][23][CrossRef][24][Web of Science][25] 5. [↵][26]1. P. Döll, 2. H. Müller Schmied, 3. C. Schuh, 4. F. T. Portmann, 5. A. Eicker , Water Resour. Res. 50, 5698 (2014). [OpenUrl][27][CrossRef][28][PubMed][29] 6. [↵][30]1. R. G. Taylor et al ., Nat. Clim. Chang. 3, 322 (2013). [OpenUrl][31] 7. [↵][32]1. B. Jongman, 2. P. J. Ward, 3. J. C. J. H. Aerts , Glob. Environ. Change 22, 823 (2012). [OpenUrl][33] 8. [↵][34]1. R. Lanari et al ., Remote Sens. 12, 2961 (2020). [OpenUrl][35] 9. [↵][36]1. T. H. M. Bucx, 2. C. J. M. Van Ruiten, 3. G. Erkens, 4. G. De Lange , in Proceedings of the International Association of Hydrological Sciences 372, 485 (2015). [OpenUrl][37] 10. [↵][38]1. K. A. B. Jago-on et al ., Sci. Total Environ. 407, 3089 (2009). [OpenUrl][39][CrossRef][40][PubMed][41] 11. [↵][42]1. S. Hallegatte, 2. C. Green, 3. R. J. Nicholls, 4. J. Corfee-Morlot , Nat. Clim. Chang. 3, 802 (2013). [OpenUrl][43] 12. [↵][44]1. G. Herrera, 2. P. Ezquerro , Global Subsidence Maps, figshare (2020); 10.6084/m9.figshare.13312070. Acknowledgments: Four anonymous peer reviewers and S. E. Ingebritsen (U.S. Geological Survey) helped to improve the manuscript. Funding for this study was provided partly by the Spanish Research Agency (AQUARISK, PRX19/00065, TEC2017-85244-C2-1-P projects) and PRIMA RESERVOIR project, and by all the institutions represented in the Land Subsidence International Initiative from UNESCO. G.H.-G., P.E., R.T., M.B.-P, and J.L.-V. designed the study, performed the analysis, and wrote the initial manuscript with input from all other authors. R.M.M., E.C.-C., and M.R. advised on the susceptibility analysis. R.M.M., J.L., P.T., and G.E. advised on hazard analysis. D.C.-F., J.L., P.T., E.C.C., G.E., D.G., W.C.H., N.K., M.S., L.T., H.W., and S.Y. advised on global exposure analysis. R.T., M.B.P., R.M.M., J.L., P.T., W.-C.H., N.K., L.T., H.W., and S.Y. contributed essential data for the analysis. All the authors edited and revised the manuscript through the different reviews. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. government. The authors declare no competing interests. All data included in this study are available at figshare ([ 12 ][45]). [1]: #ref-1 [2]: #ref-2 [3]: #ref-3 [4]: #ref-4 [5]: pending:yes [6]: #ref-5 [7]: #ref-6 [8]: #ref-7 [9]: #ref-8 [10]: #ref-9 [11]: #ref-10 [12]: #ref-11 [13]: http://science.sciencemag.org/content/371/6524/34/suppl/DC1 [14]: #xref-ref-1-1 "View reference 1 in text" [15]: {openurl}?query=rft.jtitle%253DHydrogeol.%2BJ.%26rft.volume%253D19%26rft.spage%253D1459%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [16]: #xref-ref-2-1 "View reference 2 in text" [17]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChang.%26rft.volume%253D4%26rft.spage%253D945%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [18]: #xref-ref-3-1 "View reference 3 in text" [19]: {openurl}?query=rft.jtitle%253DClim.%2BRes.%26rft.volume%253D47%26rft.spage%253D123%26rft_id%253Dinfo%253Adoi%252F10.3354%252Fcr00953%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [20]: /lookup/external-ref?access_num=10.3354/cr00953&link_type=DOI [21]: /lookup/external-ref?access_num=000289207700014&link_type=ISI [22]: #xref-ref-4-1 "View reference 4 in text" [23]: {openurl}?query=rft.jtitle%253DNat.%2BGeosci.%26rft.volume%253D2%26rft.spage%253D681%26rft_id%253Dinfo%253Adoi%252F10.1038%252Fngeo629%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [24]: /lookup/external-ref?access_num=10.1038/ngeo629&link_type=DOI [25]: /lookup/external-ref?access_num=000270355000011&link_type=ISI [26]: #xref-ref-5-1 "View reference 5 in text" [27]: {openurl}?query=rft.jtitle%253DWater%2BResour.%2BRes.%26rft.volume%253D50%26rft.spage%253D5698%26rft_id%253Dinfo%253Adoi%252F10.1002%252F2014WR015595%26rft_id%253Dinfo%253Apmid%252F32020988%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [28]: /lookup/external-ref?access_num=10.1002/2014WR015595&link_type=DOI [29]: /lookup/external-ref?access_num=32020988&link_type=MED&atom=%2Fsci%2F371%2F6524%2F34.atom [30]: #xref-ref-6-1 "View reference 6 in text" [31]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChang.%26rft.volume%253D3%26rft.spage%253D322%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [32]: #xref-ref-7-1 "View reference 7 in text" [33]: {openurl}?query=rft.jtitle%253DGlob.%2BEnviron.%2BChange%26rft.volume%253D22%26rft.spage%253D823%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [34]: #xref-ref-8-1 "View reference 8 in text" [35]: {openurl}?query=rft.jtitle%253DRemote%2BSens.%26rft.volume%253D12%26rft.spage%253D2961%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [36]: #xref-ref-9-1 "View reference 9 in text" [37]: {openurl}?query=rft.jtitle%253DProceedings%2Bof%2Bthe%2BInternational%2BAssociation%2Bof%2BHydrological%2BSciences%26rft.volume%253D372%26rft.spage%253D485%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [38]: #xref-ref-10-1 "View reference 10 in text" [39]: {openurl}?query=rft.jtitle%253DThe%2BScience%2Bof%2Bthe%2BTotal%2BEnvironment%26rft.stitle%253DThe%2BScience%2Bof%2Bthe%2BTotal%2BEnvironment%26rft.aulast%253DJago-On%26rft.auinit1%253DK.%2BA.%26rft.volume%253D407%26rft.issue%253D9%26rft.spage%253D3089%26rft.epage%253D3104%26rft.atitle%253DUrbanization%2Band%2Bsubsurface%2Benvironmental%2Bissues%253A%2Ban%2Battempt%2Bat%2BDPSIR%2Bmodel%2Bapplication%2Bin%2BAsian%2Bcities.%26rft_id%253Dinfo%253Adoi%252F10.1016%252Fj.scitotenv.2008.08.004%26rft_id%253Dinfo%253Apmid%252F18922564%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [40]: /lookup/external-ref?access_num=10.1016/j.scitotenv.2008.08.004&link_type=DOI [41]: /lookup/external-ref?access_num=18922564&link_type=MED&atom=%2Fsci%2F371%2F6524%2F34.atom [42]: #xref-ref-11-1 "View reference 11 in text" [43]: {openurl}?query=rft.jtitle%253DNat.%2BClim.%2BChang.%26rft.volume%253D3%26rft.spage%253D802%26rft.genre%253Darticle%26rft_val_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Ajournal%26ctx_ver%253DZ39.88-2004%26url_ver%253DZ39.88-2004%26url_ctx_fmt%253Dinfo%253Aofi%252Ffmt%253Akev%253Amtx%253Actx [44]: #xref-ref-12-1 "View reference 12 in text" [45]: #ref-12


A Distributional Approach to Controlled Text Generation

arXiv.org Artificial Intelligence

We propose a Distributional Approach to address Controlled Text Generation from pre-trained Language Models (LMs). This view permits to define, in a single formal framework, "pointwise" and "distributional" constraints over the target LM -- to our knowledge, this is the first approach with such generality -- while minimizing KL divergence with the initial LM distribution. The optimal target distribution is then uniquely determined as an explicit EBM (Energy-Based Model) representation. From that optimal representation we then train the target controlled autoregressive LM through an adaptive distributional variant of Policy Gradient. We conduct a first set of experiments over pointwise constraints showing the advantages of our approach over a set of baselines, in terms of obtaining a controlled LM balancing constraint satisfaction with divergence from the initial LM (GPT-2). We then perform experiments over distributional constraints, a unique feature of our approach, demonstrating its potential as a remedy to the problem of Bias in Language Models. Through an ablation study we show the effectiveness of our adaptive technique for obtaining faster convergence.


Yaa W. Women in Machine Learning Application

#artificialintelligence

“Building the New Reality” Who We Are: We are Africa’s FIRST finance and technology talent accelerator for women! Yielding Accomplished African Women aims at erecting and cultivating the largest community of African female developers and financial analysts who are passionate about using STEM to revolutionize Africa and beyond. We are creating this online community for African women across the continent. Yaa W. is introducing Africa's FIRST Machine Learning conference for Young Women. Yielding Accomplished African Women (Yaa W.) presents “Solving the Algorithm: Women in Machine Learning Conference." According to the United Nations Development Program, 66% of sub-saharan African women work in informal labor markets and in the age of technology many of these jobs may be lost in the future due to automation. This fully funded conference will be an opportunity to equip African Women with the tools and skills needed to be leaders in this emerging field. Participants will enjoy a day immersive experience with: - Inspiring keynotes - Machine learning tutorials - Networking with Google employees - Community building exercises with other women in tech - Professional development training & More........ Final Deadline - December 12th 11:59PM GMT


How Artificial Intelligence Could Widen The Gap Between Rich And Poor Nations - OpEd - Eurasia Review

#artificialintelligence

New technologies like artificial intelligence, machine learning, robotics, big data, and networks are expected to revolutionize production processes, but they could also have a major impact on developing economies. The opportunities and potential sources of growth that, for example, the United States and China enjoyed during their early stages of economic development are remarkably different from what Cambodia and Tanzania are facing in today's world. Our recent staff research finds that new technology risks widening the gap between rich and poor countries by shifting more investment to advanced economies where automation is already established. This could in turn have negative consequences for jobs in developing countries by threatening to replace rather than complement their growing labor force, which has traditionally provided an advantage to less developed economies. To prevent this growing divergence, policymakers in developing economies will need to take actions to raise productivity and improve skills among workers.


How Artificial Intelligence Could Widen the Gap Between Rich and Poor Nations

#artificialintelligence

New technologies like artificial intelligence, machine learning, robotics, big data, and networks are expected to revolutionize production processes, but they could also have a major impact on developing economies. The opportunities and potential sources of growth that, for example, the United States and China enjoyed during their early stages of economic development are remarkably different from what Cambodia and Tanzania are facing in today's world. Our recent staff research finds that new technology risks widening the gap between rich and poor countries by shifting more investment to advanced economies where automation is already established. This could in turn have negative consequences for jobs in developing countries by threatening to replace rather than complement their growing labor force, which has traditionally provided an advantage to less developed economies. To prevent this growing divergence, policymakers in developing economies will need to take actions to raise productivity and improve skills among workers.


Predicting Mobile Financial Service Adoption with Machine Learning

#artificialintelligence

Mobile money in Africa has rapidly evolved from its traditional role as a payment service to a gateway for millions on the continent to gain access to an ever-increasing array of financial products and services. For banks and other traditional financial service providers, future profitability will greatly depend on their ability to form partnerships with mobile carriers and accurately target subscribers on the network with financial service offerings that are relevant. There is a compelling business argument for effective customer targeting and cross-selling: for banks, digital channels with a high uptake boost low-cost deposit mobilization and increase lending capacity; for mobile carriers, digital financial product offerings that meet subscriber needs deepen engagement and increase retention. In this post, I will explore how machine learning can be used to classify individuals into one of four categories based on the types of financial services they are most likely to use. This is an example of multi-class classification where the task involves using an algorithm to induce a mapping function between a given set of input features and a categorical target variable that takes on more than two values.


The Geometry of Distributed Representations for Better Alignment, Attenuated Bias, and Improved Interpretability

arXiv.org Artificial Intelligence

High-dimensional representations for words, text, images, knowledge graphs and other structured data are commonly used in different paradigms of machine learning and data mining. These representations have different degrees of interpretability, with efficient distributed representations coming at the cost of the loss of feature to dimension mapping. This implies that there is obfuscation in the way concepts are captured in these embedding spaces. Its effects are seen in many representations and tasks, one particularly problematic one being in language representations where the societal biases, learned from underlying data, are captured and occluded in unknown dimensions and subspaces. As a result, invalid associations (such as different races and their association with a polar notion of good versus bad) are made and propagated by the representations, leading to unfair outcomes in different tasks where they are used. This work addresses some of these problems pertaining to the transparency and interpretability of such representations. A primary focus is the detection, quantification, and mitigation of socially biased associations in language representation.


Global Machine Learning as a Service (MLaaS) Market 2020 Industry Scenario – Amazon, Alibaba, Microsoftn, Oracle – The Daily Philadelphian

#artificialintelligence

MarketsandResearch.biz has added an exhaustive research study of Global Machine Learning as a Service (MLaaS) Market 2020 by Company, Regions, Type and Application, Forecast to 2025 that represents a basic overview of the market in which historical information related to the market such as market size, status, competitor segment, key vendors, top regions, product types, and end industries has been provided. The report highlights new business opportunities and existing marketing strategies through insights regarding SWOT analysis, market valuation, competitive spectrum, regional share, and revenue predictions. The market is suitably segmented and sub-segmented so that it can shed light on every aspect of the global Machine Learning as a Service (MLaaS) market such as the type of product, application, and region. It also reveals the competition landscape of the companies and the flow of the global supply and consumption. The report offers a granular analysis of insights into various developments, historical data, current scenario, and future predictions.


Nigeria and the Bold New World of Artificial Intelligence and Robotics, By Inyene Ibanga

#artificialintelligence

Certainly, Nigerians look forward to more government investments in the development of digital infrastructure across other sections of the country. So, it is imperative for the government to provide necessary funding to expand this centre to other parts of the country. The National Information Technology Development Agency (NITDA) has again achieved another milestone with the launch of the National Centre for Artificial Intelligence and Robotics (NCAIR) as part of its contribution to the successful implementation of the digital economy. Coming at a time when the global economy is rapidly transforming into the new economy driven by creative innovations derived from Science, Technology, Engineering and Mathematics (STEM), the unveiling of this state-of-the-art technology innovation centre can be described as futuristic, in the sense that it is a remarkable demonstration of proactivity on the part of the Ministry of Communications and Digital Economy and NITDA. NCAIR represents government's determination to create a suitable environment for discovering and harnessing the abundant creative ideas of Nigeria's teeming youth population for national development through the promotion of innovative technologies. With the actualisation of this centre, the youth segment of the population would be challenged to channel their creative energies towards preparing solutions that seek to address future problems or challenges across all sectors of the economy.