Results


Why the Data Train Needs Semantic Rails

AI Magazine

While catchphrases such as big data, smart data, data-intensive science, or smart dust highlight different aspects, they share a common theme: Namely, a shift towards a data-centric perspective in which the synthesis and analysis of data at an ever-increasing spatial, temporal, and thematic resolution promises new insights, while, at the same time, reducing the need for strong domain theories as starting points. In terms of the envisioned methodologies, those catchphrases tend to emphasize the role of predictive analytics, that is, statistical techniques including data mining and machine learning, as well as supercomputing. Interestingly, however, while this perspective takes the availability of data as a given, it does not answer the question how one would discover the required data in today’s chaotic information universe, how one would understand which datasets can be meaningfully integrated, and how to communicate the results to humans and machines alike. The semantic web addresses these questions. In the following, we argue why the data train needs semantic rails. We point out that making sense of data and gaining new insights works best if inductive and deductive techniques go hand-in-hand instead of competing over the prerogative of interpretation.


Semantics for Big Data

AI Magazine

This editorial introduction summarizes the seven guest-edited contributions to AI Magazine that explore opportunities and challenges arising from transferring and adapting semantic web technologies to the big data quest .


Reports on the 2013 AAAI Fall Symposium Series

AI Magazine

The Association for the Advancement of Artificial Intelligence was pleased to present the 2013 Fall Symposium Series, held Friday through Sunday, November 15–17, at the Westin Arlington Gateway in Arlington, Virginia near Washington DC USA. The titles of the five symposia were as follows: Discovery Informatics: AI Takes a Science-Centered View on Big Data (FS-13-01); How Should Intelligence be Abstracted in AI Research: MDPs, Symbolic Representations, Artificial Neural Networks, or --? The highlights of each symposium are presented in this report.


Reports on the 2013 AAAI Fall Symposium Series

AI Magazine

The Association for the Advancement of Artificial Intelligence was pleased to present the 2013 Fall Symposium Series, held Friday through Sunday, November 15–17, at the Westin Arlington Gateway in Arlington, Virginia near Washington DC USA. The titles of the five symposia were as follows: Discovery Informatics: AI Takes a Science-Centered View on Big Data (FS-13-01); How Should Intelligence be Abstracted in AI Research: MDPs, Symbolic Representations, Artificial Neural Networks, or — ? (FS-13-02); Integrated Cognition (FS-13-03); Semantics for Big Data (FS-13-04); and Social Networks and Social Contagion: Web Analytics and Computational Social Science (FS-13-05). The highlights of each symposium are presented in this report.



Reports of the AAAI 2012 Conference Workshops

AI Magazine

The AAAI-12 Workshop program was held Sunday and Monday, July 22–23, 2012 at the Sheraton Centre Toronto Hotel in Toronto, Ontario, Canada. The AAAI-12 workshop program included 9 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were Activity Context Representation: Techniques and Languages, AI for Data Center Management and Cloud Computing, Cognitive Robotics, Grounding Language for Physical Systems, Human Computation, Intelligent Techniques for Web Personalization and Recommendation, Multiagent Pathfinding, Neural-Symbolic Learning and Reasoning, Problem Solving Using Classical Planners, Semantic Cities. This article presents short summaries of those events.


Reports of the AAAI 2010 Conference Workshops

AI Magazine

The AAAI-10 Workshop program was held Sunday and Monday, July 11–12, 2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program included 13 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Fun, Bridging the Gap between Task and Motion Planning, Collaboratively-Built Knowledge Sources and Artificial Intelligence, Goal-Directed Autonomy, Intelligent Security, Interactive Decision Theory and Game Theory, Metacognition for Robust Social Systems, Model Checking and Artificial Intelligence, Neural-Symbolic Learning and Reasoning, Plan, Activity, and Intent Recognition, Statistical Relational AI, Visual Representations and Reasoning, and Abstraction, Reformulation, and Approximation. This article presents short summaries of those events.


Reports of the AAAI 2010 Conference Workshops

AI Magazine

The AAAI-10 Workshop program was held Sunday and Monday, July 11–12, 2010 at the Westin Peachtree Plaza in Atlanta, Georgia. The AAAI-10 workshop program included 13 workshops covering a wide range of topics in artificial intelligence. The titles of the workshops were AI and Fun, Bridging the Gap between Task and Motion Planning, Collaboratively-Built Knowledge Sources and Artificial Intelligence, Goal-Directed Autonomy, Intelligent Security, Interactive Decision Theory and Game Theory, Metacognition for Robust Social Systems, Model Checking and Artificial Intelligence, Neural-Symbolic Learning and Reasoning, Plan, Activity, and Intent Recognition, Statistical Relational AI, Visual Representations and Reasoning, and Abstraction, Reformulation, and Approximation. This article presents short summaries of those events.