Results


My Computer Is an Honor Student -- but How Intelligent Is It? Standardized Tests as a Measure of AI

AI Magazine

Given the well-known limitations of the Turing Test, there is a need for objective tests to both focus attention on, and measure progress towards, the goals of AI. In this paper we argue that machine performance on standardized tests should be a key component of any new measure of AI, because attaining a high level of performance requires solving significant AI problems involving language understanding and world modeling - critical skills for any machine that lays claim to intelligence. In addition, standardized tests have all the basic requirements of a practical test: they are accessible, easily comprehensible, clearly measurable, and offer a graduated progression from simple tasks to those requiring deep understanding of the world.


Summary Report of The First International Competition on Computational Models of Argumentation

AI Magazine

We review the First International Competition on Computational Models of Argumentation (ICMMA'15). The competition evaluated submitted solvers performance on four different computational tasks related to solving abstract argumentation frameworks. Each task evaluated solvers in ways that pushed the edge of existing performance by introducing new challenges. Despite being the first competition in this area, the high number of competitors entered, and differences in results, suggest that the competition will help shape the landscape of ongoing developments in argumentation theory solvers.


Plan Recognition for Exploratory Learning Environments Using Interleaved Temporal Search

AI Magazine

This article presents techniques for recognizing students activities in ELEs and visualizing these activities to students. It describes a new plan recognition algorithm that takes into account repetition and interleaving of activities. It was able to outperform the state-of-the-art plan recognition algorithms when compared to a gold-standard that was obtained by a domain-expert. We also show that visualizing students' plans improves their performance on new problems when compared to an alternative visualization that consists of a step-by-step list of actions.


In Search of the Horowitz Factor

AI Magazine

The article introduces the reader to a large interdisciplinary research project whose goal is to use AI to gain new insight into a complex artistic phenomenon. We study fundamental principles of expressive music performance by measuring performance aspects in large numbers of recordings by highly skilled musicians (concert pianists) and analyzing the data with state-of-the-art methods from areas such as machine learning, data mining, and data visualization. The article first introduces the general research questions that guide the project and then summarizes some of the most important results achieved to date, with an emphasis on the most recent and still rather speculative work. Our current results show that it is possible for machines to make novel and interesting discoveries even in a domain such as music and that even if we might never find the "Horowitz Factor," AI can give us completely new insights into complex artistic behavior.


AI and Music: From Composition to Expressive Performance

AI Magazine

In this article, we first survey the three major types of computer music systems based on AI techniques: (1) compositional, (2) improvisational, and (3) performance systems. For this reason, previous approaches, based on following musical rules trying to capture interpretation knowledge, had serious limitations. An alternative approach, much closer to the observation-imitation process observed in humans, is that of directly using the interpretation knowledge implicit in examples extracted from recordings of human performers instead of trying to make explicit such knowledge. In the last part of the article, we report on a performance system, SAXEX, based on this alternative approach, that is capable of generating high-quality expressive solo performances of jazz ballads based on examples of human performers within a case-based reasoning (CBR) system.


Using Artificial Neural Networks to Predict the Quality and Performance of Oil-Field Cements

AI Magazine

Inherent batch-to-batch variability, aging, and contamination are major factors contributing to variability in oil-field cement-slurry performance. Such variability imposes a heavy burden on performance testing and is often a major factor in operational failure. Our approach involves predicting cement compositions, particle-size distributions, and thickening-time curves from the diffuse reflectance infrared Fourier transform spectrum of neat cement powders. Our research shows that many key cement properties are captured within the Fourier transform infrared spectra of cement powders and can be predicted from these spectra using suitable neural network techniques.