Results


Planning and robots

Classics

Another substantial body of work on general problem-solving is that associated with the Graph Traverser program (Doran and Michie 1966, Doran 1967, Michie 1967, Doran 1968, Michie, Fleming and Oldfield 1968, Michie and Ross 1970). In this section and the next we shall consider the transition from heuristic problem-solving as exemplified by the Graph Traverser, to planning by a robot as exemplified by my own work and that of Marsh (Doran 1967, 1967a, 1968a, 1969; Marsh 1970; Michie 1967, 1968a; Popplestone 1967). In order to do this efficiently the program uses, in general, a heuristic state evaluation function and heuristic operator selection techniques to grow the search tree in the most promising direction. The following types of learning occurred in the system: (a) learning of the relationship between acts and perceptions by noting the effects of individual acts, by making generalizations about the effects of acts, and by noting that certain complicated transitions from one perceived state to another can always be achieved, (b) learning which acts to employ in particular situations and the benefits to be expected -- a kind of habit formation.


Some philosophical problems from the standpoint of artificial intelligence

Classics

We may regard the subject of artificial intelligence as beginning with Turing's article'Computing Machinery and Intelligence' (Turing 1950) and with Shannon's (1950) discussion of how a machine might be programmed to play chess. In this case we have to say that a machine is intelligent if it solves certain classes of problems requiring intelligence in humans, or survives in an intellectually demanding environment. However, we regard the construction of intelligent machines as fact manipulators as being the best bet both for constructing artificial intelligence and understanding natural intelligence. Given this notion of intelligence the following kinds of problems arise in constructing the epistemological part of an artificial intelligence: I.


Robotologic

Classics

It is possible to render any theory decidable in a trivial way by invoking a time cutoff on reasonings and having a default mechanism for deciding the values of any expressions still not decided. There does not seem to be any way of avoiding the conclusion that the basic theory must admit an efficient theorem-proving procedure which is close to being a decision procedure. This is what the well-known unification algorithm achieves (Robinson 1965, Prawit11960). By Quine's dictum, anyone who advocates the inclusion of set theory in his theory must admit to the view that sets exist: and set theory is widely held to be at the basis of all of mathematics.


Design of low-cost equipment for cognitive robot research

Classics

The aim of the design of the interface was to provide a high speed data channel through a'bombproof' socket so that a number of different devices (including Freddy) could be connected or disconnected at will. The input word is structured as follows: I I i Motor Left Right Picture Comparator flag bump bump flag outputs I l I The motor flag is cleared to 0 when the drive command is given, and is reset to 1 when motion ceases. The'world' will consist of a five foot square of aluminium honeycomb or, perhaps, the present hardboard /polystyrene sandwich mounted on a compound The slides will be rails of 2 x light alloy with ball bearing constraints. Several designs are being considered: In the simplest a single small camera mounted on a rotating vertical mast will be limited to the number of rotations allowed by its cable.