Amazon Web Services & MxNET


This repo contains an incremental sequence of notebooks designed to teach deep learning, Apache MXNet (incubating), and the gluon interface. Our goal is to leverage the strengths of Jupyter notebooks to present prose, graphics, equations, and code together in one place. If we're successful, the result will be a resource that could be simultaneously a book, course material, a prop for live tutorials, and a resource for plagiarising (with our blessing) useful code. To our knowledge there's no source out there that teaches either (1) the full breadth of concepts in modern deep learning or (2) interleaves an engaging textbook with runnable code. We'll find out by the end of this venture whether or not that void exists for a good reason.

META: A Unifying Framework for the Management and Analysis of Text Data


Recent years have seen a dramatic growth of natural language text data, including web pages, news articles, scientific literature, emails, enterprise documents, and social media such as blog articles, forum posts, product reviews, and tweets. This has led to an increasing demand for powerful software tools to help people manage and analyze vast amount of text data effectively and efficiently. Unlike data generated by a computer system or sensors, text data are usually generated directly by humans for humans. First, since text data are generated by people, they are especially valuable for discovering knowledge about human opinions and preferences, in addition to many other kinds of knowledge that we encode in text. Second, since text is written for consumption by humans, humans play a critical role in any text data application system, and a text management and analysis system must involve them in the loop of text analysis.

Cloud-based Data Mining Tools for Storage, Distributed Processing, and Machine Learning Systems for Scientific Data


This hands-on training is intended to familiarize researchers and data scientists with the services Azure offers to aid them in their research, especially with regard to high-performance computing, big-data analysis, and analyzing data streaming from Internet-of-Things (IoT) devices.

Using R for Scalable Data Science: Single Machines to Hadoop Spark Clusters


In this tutorial, we will demonstrate how to create scalable, end-to-end data analysis processes in R on single machines as well as in-database in SQL Server and on Hadoop clusters running Spark. We will provide hands-on exercises as well as code in a public GitHub repository for attendees to adopt in their data science practice. In particular, the attendees will see how to build, persist, and consume machine learning models using distributed machine learning functions in R. R is one of the most used languages in the data science, statistical and machine learning (ML) community. Although open-source R (CRAN library) now has in excess of 10,000 packages and functions for statics and ML, when it comes to scalable analysis using R, or deployment of trained models into production, many data scientists are blocked or hindered by (a) its limitations of available functions to handle large datasets efficiently, and (b) knowledge about the appropriate computing environments to scale R scripts from desktop analysis to elastic and distributed cloud services. In this tutorial, we will discuss how to create end-to-end data science solutions that utilize distributed compute resources.

What Are the Prospects for Deep Learning?


The data science community is constantly on the hunt for the next blockbuster multi-use algorithm. Ease of use and interpretability have made logistic regression and decision trees analytic staples. But their accuracy and classification stability leave something to be desired. So the industry keeps searching for an algorithm that can decipher key patterns and signals in data. A long line of fad techniques has come and gone.

Apple Watch accurately detects hypertension and sleep apnea, study finds


Researchers studying the healthcare implications for modern wearable devices have found that wrist-worn gadgets like Apple Watch and Fitbit can be used to accurately detect hypertension and sleep apnea. The research claims that data from wearable heart rate sensors, when combined with machine learning algorithms, can surface hidden patterns that predict whether a person is at risk for certain health problems. The study was conducted by health startup Cardiogram and UCSF and followed more than 6,000 subjects, some of whom had diagnosed hypertension and sleep apnea. More broadly, the research aims to spur business development around the use of wearables within preventive medicine. "What if we could transform wearables people already own -- Apple Watches, Android Wears, Garmins, and Fitbits -- into inexpensive, everyday screening tools using artificial intelligence?"

Automation will impact the global workforce in 2018


Don't worry, robots and AI won't take your job: Well, at least not all of it Automation probably won't lead to massive unemployment, but governments will still need to prepare for major upheaval, according to a new study. Until now, automation has gotten a bad rap. In 2013, Oxford professors Carl Frey and Michael Osborne analyzed 702 occupations and declared 69 million US jobs, or 47 percent of the workforce, would be lost. In 2017, CNBC reported that 65 percent of Americans believed other industries would suffer because of automation, but theirs would be unaffected. Despite the doomsaying being flat-out wrong (automation will only eliminate 9 percent of US jobs in 2018 but also create 2 percent more in a new "automation economy"), the demand for automation has never been higher.

Will Self-Driving Cars Kill The Radio?

Huffington Post

With the imminent rise of self-driving cars' popularity, Nikhil Reddy discusses the possibility that traditional radio could be left in the dust.

Five new jobs for humans if robots take over the world

Daily Mail

By now you've probably heard how robots are going to take over our jobs. And how this will leave future generations with plenty of time on their hands to take up hobbies and pursue creative interests. All while our robot friends spend their days doing the lion's share of the work needed to make the world run. While millions of jobs are set to be lost to robots in the coming years, one expert at the University of York has revealed five new (if a little odd) professions they say will spring up around the machines. A lot of this is indeed true, robots probably will take over a significant share of labour in some industries – meaning that not too far in the distant future your waiter, taxi driver or even the person on the other end of the phone trying to sell you something could well be a robot.

Using Machine Learning to Predict the Weather • r/MachineLearning


Great article but it unfortunately doesn't account for a lot of the physics that go into weather prediction:( that's what I'm hoping for soon (and trying to go to grad school / phd programs for). You can only do so much (right now!!) with ML, NNs, and regression when it comes to weather prediction as, again, you're lacking a lot of the physics in those models.