Plotting

Results


Log-based Anomaly Detection Without Log Parsing

arXiv.org Artificial Intelligence

Software systems often record important runtime information in system logs for troubleshooting purposes. There have been many studies that use log data to construct machine learning models for detecting system anomalies. Through our empirical study, we find that existing log-based anomaly detection approaches are significantly affected by log parsing errors that are introduced by 1) OOV (out-of-vocabulary) words, and 2) semantic misunderstandings. The log parsing errors could cause the loss of important information for anomaly detection. To address the limitations of existing methods, we propose NeuralLog, a novel log-based anomaly detection approach that does not require log parsing. NeuralLog extracts the semantic meaning of raw log messages and represents them as semantic vectors. These representation vectors are then used to detect anomalies through a Transformer-based classification model, which can capture the contextual information from log sequences. Our experimental results show that the proposed approach can effectively understand the semantic meaning of log messages and achieve accurate anomaly detection results. Overall, NeuralLog achieves F1-scores greater than 0.95 on four public datasets, outperforming the existing approaches.


Extending Isolation Forest for Anomaly Detection in Big Data via K-Means

arXiv.org Artificial Intelligence

Industrial Information Technology (IT) infrastructures are often vulnerable to cyberattacks. To ensure security to the computer systems in an industrial environment, it is required to build effective intrusion detection systems to monitor the cyber-physical systems (e.g., computer networks) in the industry for malicious activities. This paper aims to build such intrusion detection systems to protect the computer networks from cyberattacks. More specifically, we propose a novel unsupervised machine learning approach that combines the K-Means algorithm with the Isolation Forest for anomaly detection in industrial big data scenarios. Since our objective is to build the intrusion detection system for the big data scenario in the industrial domain, we utilize the Apache Spark framework to implement our proposed model which was trained in large network traffic data (about 123 million instances of network traffic) stored in Elasticsearch. Moreover, we evaluate our proposed model on the live streaming data and find that our proposed system can be used for real-time anomaly detection in the industrial setup. In addition, we address different challenges that we face while training our model on large datasets and explicitly describe how these issues were resolved. Based on our empirical evaluation in different use-cases for anomaly detection in real-world network traffic data, we observe that our proposed system is effective to detect anomalies in big data scenarios. Finally, we evaluate our proposed model on several academic datasets to compare with other models and find that it provides comparable performance with other state-of-the-art approaches.


A Unifying Review of Deep and Shallow Anomaly Detection

arXiv.org Artificial Intelligence

Deep learning approaches to anomaly detection have recently improved the state of the art in detection performance on complex datasets such as large collections of images or text. These results have sparked a renewed interest in the anomaly detection problem and led to the introduction of a great variety of new methods. With the emergence of numerous such methods, including approaches based on generative models, one-class classification, and reconstruction, there is a growing need to bring methods of this field into a systematic and unified perspective. In this review we aim to identify the common underlying principles as well as the assumptions that are often made implicitly by various methods. In particular, we draw connections between classic 'shallow' and novel deep approaches and show how this relation might cross-fertilize or extend both directions. We further provide an empirical assessment of major existing methods that is enriched by the use of recent explainability techniques, and present specific worked-through examples together with practical advice. Finally, we outline critical open challenges and identify specific paths for future research in anomaly detection.